.x. lsomorphic

SOFTWARE

SmartClient ® Quick Start Guide

SmartClient v12.1

Isomorphic Software

SmartClient & Quick Start Guide

Copyright © 2021 and beyond Isomorphic Software, Inc. All rights reserved. The

information and technical data contained herein are licensed only pursuant to a license

agreement that contains use, duplication, disclosure and other restrictions; accordingly, it

i s AUnpubilgihsthsed eserved under the copyright | aws
purposes of the FARs.

Isomorphic Software, Inc.

1 Sansome Street, Suite 3500
San Francisco, CA94104
U.S.A.

Web: www.isomorphic.com
Email: info@isomorphic.com

Notice of Proprietary Rights

The software and documentation are copyrighted by and proprietary to Isomorphic

Software, Inc. (Alsomorphico). | somorfptheic retain
software and documentation. Except as expressly licensed by Isomorphic in writing, you

may not use, copy, disseminate, distribute, modify, reverse engineer, unobfuscate, sell,

lease, sublicense, rent, give, lend, or in any way transfer, by any mean®r in any medium,

the software or this documentation.

1. These documents may be used for informational purposes only.
2. Any copy of this document or portion thereof must include the copyright notice.

3. Commercial reproduction of any kind is prohibited wi thout the express written
consent of Isomorphic.

4. No part of this publication may be stored in a database or retrieval system
without prior written consent of Isomorphic.

Trademarks and Service Marks

Isomorphic Software, SmartClient, and all Isomorphic -based trademarks and logos that
appear herein are trademarks or registered trademarks of Isomorphic Software, Inc. All
other product or company names that appear herein may be claimed as trademarks or
registered trademarks of their respective owners.

Discla imer of Warranties

THE | NFORMATI ON CONTAI NED HEREIN I' S PROVI DED nAS
OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING

ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE OR NONINFRINGEMENT, ARE DISC LAIMED, EXCEPT AND ONLY TO

THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Isomorphic Software

http://www.isomorphic.com/
mailto:info@isomorphic.com

SmartClient Quick Start

Contents
(0] 01 1= | £SO RR ii
How to use this guide . e Y
More than Just Widgets 8 A Complete Architecture Vi
Eliminates Cross-Browser Testing and Debugging....................... Vi
Complete SOIULIONcooeeeeeiie e Vi
Open, Flexible Architecture............cccovvviiiiiiiiiie e, Vii
1. OVEIVIEW ot ciieeis et e aaeeeees e 1
ATCNITECTIUNE .. 1
Capabilities and Editions of SmartClientccocovviveiviiinnnnn. 2
Standard Capabilitiescccceeeieiiiiiii e, 3
Optional MOAUIESc.coee i 4
SDK COMPONENTS.....iiiei e r e e e eeaeas 5
2. Installation .o e eee e 6
REQUIFEMENTSo e e e e e aaeaaannes 6
1) (=] 0 PSP 6
Server Configuration (optional)cccceeeeeiiiiiiiiiiiiic . 9
3. RESOUICES ..ooiiiiiiiiiiiiiiiiiiiiiiies et es e 10
SNOWCASE.......cciiiiii et e e e e aeans 10
Demo ApPHCAtIONueiiieie i 11
Developer CONSOE........uuuiiiiiee e 12
RETEIENCE. ... i 17
CommUNILY WIKI ..ueeecic e e 18
B o o 1 T SRR 19
[T o U = o =P 19
HEAAEISeeieiiieee et 20
L0001 0] oT0] 0[] 01 TP 21
Hello WOrI ... e 22
[T o] 10) V71 T 23
5. Visual CompoNeNtS .o rircies e 24
Component Documentation & Examples...........ccceeeiiiiiiiiinnnnnnnn. 24
Identifying COMPONENLSvuiiiiiiiiiiiei e 25
Manual LayOUL..........ccouuuiiiiiiiieii e e e e e ee e e e e e eeees 25
Drawing, Hiding, and Showing Components..........ccccccuveeeeeeennn. 27
Handling EVENLSouiiiiiiiiiiieee e 27
6. DataBinding ..o e e 29
Databound COMPONENEScovvvieieiiiiiiiiieee e 29
FIEIAS . 30
FOrm CONtrOlS ..o 32

ii Isomorphic Software

SmartClient Quick Start

DaAtASOUICESttt e et e eeeeeeenas 34
DataSource OPErationNS.........ccceuuiiiieereeiiiis e e e e e e e eerae 38
DataBound Component Operations..............ooovvvvveieieiiiineeeeeeneenn. 39
Data Binding SUMMANYuuriiiiiiiiieeeeeiiaeie e 40
7. LAYOUL i e e 42
ComMPOoNENnt LayOUL........oiieiieeieiis e ee e e e e e e e 42
Container COMPONENLSccoevviiiiieireeiii e e 44
FOIM LaYOULeeee ettt e 45
8. Data Integration ... e A7
DataSource REQUESTS.........v i v 47
SmartClient Server Framework...........cooooiiiiiiiiiiieeee 48
DSRequests and DSRESPONSES......ccccuviiieerveiiiiiieeiiieeeeeeeeniaas 49
Requed and Response Transformation.............cccoeeeevivvieeeennn. 49
Criteria, Paging, Sorting and Caching............cccoovviiiiiiiiiiniinns 51
Authentication and Authorizationccccooiviiiiiiiiieniiiie 51
REIOGIN. ...t 53
Binding to XML and JSON SErVICESccceeviiiiiiiiiiiiiiiienniiiiiene 54
WSDL INtEQrationvvvvviiiiiiiiiiie s s eeeeeiseesie e e e e e e eannnees 56
9. SmartClient Server Framework .o e, 58
DataSource GEeNEratioN.............ueeiieeeeeiiiiiiiie e 58
Server REQUESE FIOW........cviiiiiiiiiiiiice e 61
Direct Method Invocationccccoovvvveiiiiiiie e, 63
DMI Parameterscoooe i 64
Adding DMI BUSINESS LOQICuuviuriiiiiiiieeiiee e 64
Returning Dataccooooiiiiiiieee e 67
Queuing & TranSaCtiONS............uuvuriiiiiiiiie e 68
Queuing, RESTHandler, and SOAS........ccccceiiiiireeiiiiie e 70
Operation BiNAINGScuviiiiiiiiiiiiiiiiiee e 70
DecClarative SECUILYooviieeiiiiiiiiiiii et 72
Declarative Security SEUP........ccocciiiiiiiiiiieeeeeeeeieeee e 74
NON-Crud OPEratioNS.........cccuuuriiiiiiiiiiieeee et e e e e e e sseeneeeenees 75
Dynamic Expressions (VeloCity)ooooeiiiiiiiiiiiiieeiiiiiiiieeeeeeee 77
Server SCHPLINGccoo i 79
Including Values from Other DataSourcescccccccvvvvvvvvnnnnnnnnn. 81
SQL Templating.......ccooviiiiiiieeeie e 83
SQL Templating 8 Adding Fieldscccooeveeiiiiiiiiiieceen, 86
Why focus on.ds.xml fileS?ceiiiiiiii e, 88
CUStOM DAtaSOUICES......ccciiiiiiieeeeeiiter et eaas 89
Generic RPC operations (advanced).............ccceeeeeiiiiiiiiieeennninne 91
10. Extending SmartClient ..o s 93
Client-side arcChiteCtureuveeeeiiiiiieee e 93
Customized ThEMES. 94
Customized COMPONENTSeviiiiiieeeeiaiaeae e 96
NEW COMPONENTSueiiiiiiii e 97
NeW FOrm CONtrolSuuveuiiiiieii e e e e e 99
5 T T PR 102
BEGINNET TIPS .ot 102
HTML @Nd CSS TIPS, ceeeieiieeiiiiiiiiiiiiiiiie et 102

iii Isomorphic Software

SmartClient Quick Start

Architecture Tips

... 103
12. Evaluating SmartClient ..o e 107
Which Edition to Evaluatecccccevviiiiiiiiiine 107
Evaluating Performance.............cccovvvviiiiiie e, 108
Evaluating Interactive Performancecccccviiiiiieeeieneee, 110
Evaluating Editions and PriCiNgccceuviiiiierieiiiin e, 111
A note on supporting Open SOUICE........cccoeeevveeiiiiiieeeeeeieeeeeeeenenn, 112
CONLACES et e e 113

Isomorphic Software

SmartClient Quick Start

How to use this guide

The SmartClient Quick Start Guide is designed to introduce you to the
SmartClientE web presentation layer. Our goals are:

1 To have you working with SmartClient components and
services in a matter of minutes.

9 To provide a conceptual framework, with pointers to more
detail, so you can explore SmartClient in your areas of
interest.

This guide is structured as a series of briefchapters, each presenting a set
of concepts and handson information that you will n eed to build
SmartClient-enabled web applications. Thesechapters areintend ed to be
read in sequence earlier chapters provide the foundation concepts and
configuration for later chapters.

This is an interactive manual. You will receive the most benefit from this
guide if you are working in parallel with the SmartClient SDK & following
the documented steps, creating and modifying the code examples, and
finding your own paths to explore. You may want to print this m anual for
easier reference, especially if you are working on a singledisplay system.

We assume that you are somewhat acquainted with basic concepts ofveb
applications (browsers, pages, markup, scripting), object-oriented
programming (classes, instances, inheritance), anduser interface
development (components, layout, events). However, you do not need
deep expertise in any specific technology, language, or system. If you
know how to navigate a file system, create and edit text files,and open
URLs in a web browser, you can start building rich web applications with
SmartClient today.

Q T I'f you canét wai youdaroskigdirdctly oot ar t e d
Installation (Chapter 2) to start a SmartClient
deveopment server and begin Resources(Chapter 3) and
Coding (Chapter 4). But if you can spare a few minutes, we
recommend reading the introdu ctory chapters first, for the
bigger picture of SmartClient goals and architecture.

Thank you for choosing SmartClient, and welcome.

v Isomorphic Software

SmartClient Quick Start

Why SmartClient?

Smart Client helps you to build and maintain more usable, portable,
efficient web applications faster, propelled by an open, extensible stack of
industry -tested components and services.

In this chapter we explore the unigue traits of the SmartClient platform
that set it apart from other technologies with similar purpose.

More than Just WidgetsiA Complete Architecture

SmartClient provides an end -to -end application architecture , from
Ul components to server-side transaction handling.

The examples included with SmartClient demonstrate the simplicity that
can only be achieved by a framework that addresses both serverand
client-side architectural concerns to deliver globally optimal solutions.

SmartClientdéds Ul components are carefully designe:
responsivenessamd mi ni mi ze server | oad, and SmartcClientos
components are designed around the requirements of high-productivity

user interfaces.

Even if you adopt only part of the SmartClient solution, you benefit from
an architecture that takes into account the entire problem you need to
solve, not just a part of it. Every integration point in the Smart Client
platform has been designed with a clear understanding of the
requirements you need to fulfill, and , the solutions built into Smart Client
provi de a fdrbnewaypfmeeting those requirements.

Eliminates Cross-Browser Testing and Debugging

SmartClient provides aclean, clear, object -oriented approach to Ul
development that shields you from browser bugs and quirks.

Even if you need to create a totally wnique look and feel, SmartClient6 s
simplified skinning and branding requires only basic knowledge of page
styling, and you never have to deal with browser layout inconsistencies.

Vi Isomorphic Software

SmartClient Quick Start

In contrast, lower -level frameworks that provide a thin wrapper over
browser APIs cand protect you from the worst and most destructive of
browser issues, such as timingdependent bugs and memory leaks.

SmartClienté s power f ul-grienedAR[s give SmattClient the
flexibility to use whatever approach works best in eachbrowser, so you
donét have to worry about it.

This allows SmartClient to make a simple guarantee: ifthere is a cross
browser issue,it's our problem, not yours

Complete Solution

SmartClient offers a complete presentation layer for enterprise
applications: everything you need for the creation of full -featured, robust,
high-productivity business applications.

The alternatived throwing together partial solutions from multiple
sourcesd creates a mishrmash of different programming par adigms,
inconsistent look and feel, and bizarre interoperability issues that no
single vendor can solve for you.

Whether you are a software vendor or enterprise IT organization, it never

makes sense to build and maintain a Ul framework of your own, much

less to own fAglue codeo tying several fra
comprehensive presentation framework gives you a competitive

advantage by enabling you to focus on your area of expertise.

Open, Flexible Architecture

Because SmarClient is built entirely with standard web technologies, it
integrates perfectly with your existing web content, applications, portals,
and portlets. You can build a state-of-the-art application from scratch, or
you can upgrade existingweb applications and portal s at your own pace,
by weaving selected SmartClient components and servicesinto your
HTML pages.

By giving you both options, SmartClient allows you to address a broader
range of projects with a single set of skills. You can even reuse existing
content and portlets by embedding them in Smart Client user interface
components. SmartClient allows a smooth evolution of your existing web
applicationsdy ou ar en ddtartbverr ced t o

Next, SmartClient is fully open to integration with other technologies. On
the client, you can seamlessly integrateJava applets, Flash/Flex modules,
ActiveX controls and other client technologies for 3D visualization,
desktop integration, and other specialized functionality . On the server,

Vil Isomorphic Software

SmartClient Quick Start

SmartClient provides flexible, generic interfaces to integrate with any data
or service tier that you can access through Java code.

Finally, SmartClient is completely extensible , all the way down to the

web standards on which the system isconstructed. I f you canét do

somet hing Aowty od dadere thwixl d or buy components that
seamlessly extendSmartClient in any manner you desire.

We welcome your comments and requests, however large or small, to
feedback@smartclient.com.

viii Isomorphic Software

mailto:feedback@smartclient.com

1. Overview

Architecture

The SmartClient architecture spans client and server, enabling Rich
Internet Applications (RIAs) that communicate transparently with your
data and service tiers.

Client Server
GUI Rendering & Interactivity DataSourc Data Providers
schem
Loca DataSource Bindil Metadata and Operatio
Operation:
. HTTP(S —
Communication Laye Communication Lay:
XMLHttp
Web Browset Application Servel

Within the web browser, SmartClient provides a deep stack of services
and components for rich HTML5 / Ajax applications . For those using a
Java-based server,SmartClient provides a serverside framework that can
be added to any existing Java web application.

The client- and server-based components have a shared concept of

DataSources, which describe the business objects in your application. By

working from a single, shared definition of the data model, client - and

server-side components can coordinate closely to deliver much more

sophisticated f unctional ity fout of the boxo t
client-based or serverbased solution can deliver.

For example, validation rules are declared within the DataSourced these
rules are then enforced client-side by SmartClient Ajax components, and
server-side by SmartClient server components. Similarly, the set of valid
operations on an object is declared in a DataSource, and this single
declaration controls client -side behaviors like whether an editing interface
is enabled, and controls security checkson the server for safe enforcement
of business rules.

SmartClient Quick Start

Using a DataSource as a shared data definition also greatly reduces
redundancy between your user interface code and serverside code,
increasing agility and reducing maintenance effort.

DataSources canbe derived on-the-fly or as a batch process from other,
pre-existing sources of metadata, such as annotated Java Beans and XML
Schema, further reducing system-wide redundancy.

This concept of a DataSource as a sharedlient-side data definition can be
used with or without the optional SmartClient Java server components.
However, if you do not use the SmartClient server components, all server-
side functionality of DataSources must be implemented and maintained
by your team.

Finally, note that SmartClient does not require that you adopt this entire
architecture. You may choose to integrate with only the layers and

components that are appropriate for your existing systems and
applications.

Capabilities and Editions of SmartClient

SmartClient comes in several aitions, and the features included in each
of the editions are described on the SmartClient.com website at

http://www.SmartClient.com/product

The portions of this document that make use of SmartClient server
components require the Pro license or above. Certain features
demonstrated or referred to in the document require Power or Enterprise
Editions of SmartClient - this is mentioned in each case.

If you have downloaded the LGPL version, we recommend downloading
the commercial trial version for use during evaluation. Applications built
on the commercial edition can be converted to the LGPL version without
wasted effort, but the reverse is not trued using the LGPL version for
evaluation requires you to expend effort implementing functionality that
is already part of the commercial version. For more details, seeChapter
12, Evaluating Smart Client.

2 Isomorphic Software

http://www.smartclient.com/product

SmartClient Quick Start

Standard Capabilities

The standard capabilities of the SmartClient web presentation layer
include:

Area Description

Foundation SmartClient class system, data types, JavaScript
Services extensions, and browser utilities.

Foundation Building -block visual components, including
Components Canvas, Img, Stretchimg , and StatefulCanvas

Event SmartClient event handling systems, including
Handling mouse, keyboard, focus, drag & drop,

enable/disable, and selection capabilities.

Controls Basic visual controls, including Button , Toolbar
Menu, and Menubar .

Forms Form layout managers, value managers, and
controls (including Textitem , Dateltem |,
Checkboxltem , Selectltem , etc.).

Grids GridRenderer , ListGrid and related subclasses,
providing grid rendering, selection, sorting,
editing, column handling, and cell events.

Trees Tree data structures, and TreeGrid Ul
components, for managing hierarchical data.

Layout Component layout managers and layout-
managed containers, including HLayout ,
VLayout , Window, and TabSet .

Data Data model, cache management, and

Binding communication components including
DataSource , ResultSet , and RPCManager.

Themes/ Pervasive support and centralized control over

Skins theme/skin styles, images, and defaults, for

personalization or branding.

3 Isomorphic Software

SmartClient Quick Start

Optional Modules

Isomorphic also develops and markets the following optional modules to
extend the standard SmartClient system. For more information on these
modules, seeSmartClient Reference Y Optional Modules .

Option Description
SmartClient Provides direct Java APIs for databinding and
Server low level client-server communications, deep

integration with popular Java technologies such
as Spring, Hibernate, Struts, and others.
Extensive server-side validators that match the
client-side versions and work automatically. For
more information, please see thed Smar t C
Server Feature Summary
section of the SmartClient Reference.

Analytics Multi -dimensional data binding and interactive
CubeGrid components (cross-tabs, dynamic data
loading, drag-and-drop pivoting).

Real -Time Real-time, server push messaging over HTTP,

Messaging with Java Message Server (JMS) backed publish
and subscribe services.

Network File packaging, caching, and compression

Performance services for optimal performance of distributed
applications.

4 Isomorphic Software

SmartClient Quick Start

SDKComponents

The SmartClient Software Developer Kit (SDK) includes extensive
documentation and examples to accelerate you along the learning curve.
These resources are linked from the SDK Explorer, and are available in
the docs/ and examples/ directories of your SDK distribution.

The SmartClient SDK also provides the following supplementary,
develop-time components for rapid development:

Development Component Component Description

Developer Console Provides client-side application
debugging, inspection, and profiling.

Admin Console Provides a browser-based Ul for
server configuration and datasource
management. Note: Requires
SmartClient Server.

Embedded server Enables a lightweight, stand-alone
(Tomcat) development environment.
Embedded database Provides a basic persistence layer for
(HSQLDB) rapid development. Note: Requires

SmartClient Server.

e 1 Chapter 8 (Data Integration) outlines the integration
layers and interfaces for your production data and services.

5 Isomorphic Software

SmartClient Quick Start

2. Installa tion

Requirements

To get started quickly, we will use the embedded application server
(Apache Tomcat 5.0) and database engine (HSQL DB 1.7) that are
included in the SmartClient SDK distribution.

Your only system requirements in this case are:
9 Java SDK (JDK) v18+ (you can download a current JDK

from https://www.oracle.com/java/technologies/ja vase-
downloads.html)

1 aweb browser to view SmartClient examplesand
applications (see docs/readme.html in the SDK for a
complete list of supported browsers and versions)

i atexteditor to create and edit SmartClient code and
examples

If you wish to install SmartClient in a different application server and/or
run the SDK examples against a dfferent database, please see
docsl/installation.html in the SDK. For purposes of this Quick Start, we
strongly recommend using the embedded server and database. You can
always redeploy and configure your SmartClient SDK in another
application server later.

Steps

To install and start your SmartClient development environment:

1. Download and install JDK 1.8+ if necessary (Mac OS X users
note: a JDK is pre-installed on your system)

2. Start the embedded server by running
start_embedded_server.bat (Windows), .command (Mac OS X),
or .sh (*nix)

6 Isomorphic Software

https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html

SmartClient Quick Start

3. Open the open_ISC_SDK_from_server shortcut
(Windows/MacOS) or open a web browser and browse to
http://localhost:8080/index.html (all systems)

Depending on your system configuration, you may need to perform
one or more additional steps:

T

If you already have a JDK or JRE installed on your system ,
you may need to set a JAVA_HOME environment variable
pointing to the home direct ory of JDK 1.8+, so the server
will use the correct version of Java.

If port 8080 is already in use on your system , you may
specify a different port for the embedded server by

appending
-- port newPortNum (e.g.-- port 8081) to the
start_embedded_server.bat , .command, or .sh command. If

you do change the default port, you must browse directly to
http:/localhost:newPortNum/index.html . to open the SDK
Explorer

If your web browser is configured to use a proxy server
you may need to bypass thatproxy for local addresses.In
Internet Explorer,goto Tools Y | nt er net YOpti onsé

ConnectionsY LAN Settings. , and chec
server for | ocal addre¥seso. I n
Opti ohGeperalY Connection Settingsé
Al ocal hostd in the ANo Proxy for

Isomorphic Software

0

http://localhost:8080/index.html

SmartClient Quick Start

When you have successfully started the server and opened
http://localhost:8080/index.html in your web browser, you
should see the SmartClient SDK Explorer:

| NN f.-" 4 SmartClient™ SNAPSHOT v X .\"{_'\ e

C | @ www.smartclient.com/smartclient-latest/docs/reso... +r

SmartClient™ SDK Explorer =
Guick Start Showcase Docs
Guide
{etart heve)
—ml

.,
10

Tools Onlime License

&2001 and beyond |somorphic Software, Inc.

Instructions for adding SmartClient to any existing Java web project in
any IDE are in the SmartClient Reference - Concepts > Deploying
SmartClient.

8 Isomorphic Software

http://localhost:8080/index.html
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..iscInstall
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..iscInstall

SmartClient Quick Start

Server Configuration (optional)

You do not need to perform any server configuration for this Quick Start.
However, for your information:

9 The SmartClient Admin Console (linked from the SDK
Explorer) provides a graphical interface to configure direct
database connections, create database tables from
DataSource descriptors, and import test data. Note:
Requires SmartClient Server.

9 Other server settings are exposed for direct configuration in:
WEB INF/classes/server.properties
WER INF/web.xml

Q If you have any problems installing or starting SmartClient, try the
¥ SmartClient Developer Forums at forums.smartclient.com .

9 Isomorphic Software

http://forums.smartclient.com/

SmartClient Quick Start

3. Resources

Showcase

From the SmartClient SDK Explorer, pick Showcase . When the
Showcasehas loaded, you should see the following screen:

® © ® | SmanClient™ SNAPSHOT v/ % | & SmartGlient™ SNAPSHOT v x || e
& > C | @ localhost:8080/showcase/?id=Welcome hrd
Search examples... Home
o New Samples in 11.0 and 11.1 Search: ©, X #of Samples : ®
of Hello World 1
&f Hello World (styling) [] Applications [] Basics [] calendars
& Hello You (form) || comboxBox & Farmily [| cortrol [] cubes
= Live Grid [] pataBinding [] pata Integration [] prag & brop)
¥
Effects Extendin: Featured Saj
w Adaptive Filter D D 9
Grids Layout Mobile Sam
fin Advanced Filter D D D
[] server Custom DataSources || Server Examples [] server Expo
[=5] Dynamic Frozen Columns
[] server Jra [] Server Real-Time Messaging || Server Scrip
User-Defined Hilites
& [] server Transactions [] server Upload / Download [] Server valid

[=7 Dynamic Grouping

[T Grid Summaries -
% 2 Mass Update N EW I
s P [e | ® Hello world!

™ Expanding Rows SAMPLES

wla Zoomable Charts

New Samples Hello World Hello World (styling)
[Multi-Axis Charts

isc.ListGrid.creste({
a'a Color Scale Chart me ;| Fiyfiiend 1D:"dsListGrid", 99771

width: "1eeX",

height: “100%",
7 Dependent Selects (Grid) m::E;cldhmrh: 2, SKU Item
auto'e(r_hDM‘r: tr 5977100 Correction F
7 Dependent Selects (Form) |, dotasource: "supp ol
P Filter Related Records ~ Hella You (form) Live Grid Adaptive Filter
Version: 11.1d °
Built: 2017-06-09 P — p— =] e

The Showcaseis your best starting point for exploring SmartClient
capabilities and code.

The code for the examples in theShowcasecan be edited within the
Showcaseitself, however, changes will be lost on exit. To create a
permanent, standalone version of an example found in the Showcase

10 Isomorphic Software

SmartClient Quick Start

copy the source code into one of the templates in thetemplates/ directory
(discussed in more detail in Headers of the next chapter, Coding).

All of the resources used by theShowcaseare also available in the
isomorphic/system/reference/ directory. In particular, exampleTree.xm |
establishes the tree of examples on the left hand side of theShowcase
interface, and contains paths to example files in the inlineExamples/
subdirectory. Note that some DataSources shared by multiple examples
are in the central shared/ds and examples/shared/ds directories.

Demo Application

From the SmartClient SDK Explorer, pick Docs then Demo App. The
first launch of this application will take several seconds, as the application
server parses andcompiles the required files. When the application has
loaded, you should see the following screen:

[] [} -. += SmartClient Demo Application ») \ 8
C | ® localhost:8080/isomorphic/system/reference/inlineExamples/demoApp/demoAppJS.jsp w
Categories Items
+ " Canteen and Washroom Products :
+ Computer Consumables < >
+ [Computer Hardware/software Name SKU Descripti... Category Units UnitCost In Stock
+ First Aid
+ General Office Products
+ [Office Filing and Storage
Mo iterns to show.
+ Office Furniture
+ Office Machines and Electronics
+ [Office Paper Products
Item Details
4 Instructions
O, View ‘o
™
To use this application:
1. Select a folder in the Office Select an item to view its details

Supply Categories tree to display
items in that category.

2. Select an item in the Office
Supply ftems list to view or edit
item details

3. Select the View or Ediittab in the
iItem Details window as
appropriate.

A_Edit infarmating in tha Edit nana |~

This example application demonstrates a broad range of SmartClient user
interface, data binding, and layout features.

To experience this application as anend user, follow the steps in the
Instructions window at the bottom left of the application window.

11 Isomorphic Software

SmartClient Quick Start

The SmartClient SDK provides two versions of the code for this
application, one in JavaScript and one in XML, to demonstrate alternate
coding formats.

Q SmartClient JS and XML coding formats are discussed in
detail in Chapter 4 (Coding)

To explore the application code for this application, click on the XML or
JS links underneath the Demo App icon in the SDK Explorer. You can
also view and edit the source code for this application directly from the
isomorphic/system/reference/inlineExamples/demoApp/ directory in the
SDK. After you make changes to the code, simply eload the page in your
web browser to see the results.

Each jsp file in the demoApp/ directory contains all component
definitions and client -side logic for the application. The only other source
files for this application are demoApp_helpTextjs and
demoApp_skinOverrides.js in the same directory, and the two datasource
descriptors in:

examples/shared/ds/supplyltem.ds.xml
examples/shared/ds/supplyCategory.ds.xml

The key concepts underlying this applicationd SmartClient JS and XML
Coading, Visual Components, DataSources, and Layout® are covered in
chapters 4 through 8 of this guide. You may want to briefly familiarize
yourself with the code of this example now, so you can refer back to the
code to ground each concept as it is introduced.

Deweloper Console

The SmartClient Developer Console is a suite of development tools
imple mented in SmartClient itself. The Console runs in its own browser
window, parallel to your running application, so it is always available in
every browser, and in every deployment environment. Features of the
Developer Console include:

logging systems

runtime code inspection and evaluation

runtime component inspection

tracing and profiling

= =4 =4 =4 =4

integrated reference docs

12 Isomorphic Software

SmartClient Quick Start

You can open the Developer Console from any SmartClientenabled page
by typing javascript:isc.showConsole() in the address bar of your web
browser. Try it now, while the demo application is open in your browser.
The following window will appear:

¥%) SmartClient Developer Console - Mozilla Firefox =] E3
@ I T | http:/Aocalhost : 2080/ somorphic/system /helpers./Log html i"l?
Results Watch RPC Server Logs XML WsDL SQL Browser Aok |l

“ Log Messages
Logging Preferences A
18:30:41.870:INFO: Loginitialized

42 106:WARN: AutoObserver Uze addinterfaceProperties() to add methods to interface [Clazs AutoObserver]
18:30:42.289:INFO; Log:izc.Page iz loaded

18:3

Mouse Event Target : isc_ImgSectionHeader_2_background Focus Target :

Last MouseDown Target: [click to add to evall

Enable AutoTest subsvetem... Canvas Count: 78
draw(}= : 69 clear(}=z : 4 redraw(}s : 18 destroy()}z: 0

 Ewvaluate Server Script @
Evaluate XML

Literal Text

“ Evaluate JS Expression

form.getFieldz()

Eval 15 Clear Ruler
SmartClient Verzion: SC_SNAPSHOT-2010-09-10VEVAL Development Only (expires 2010.11.09_10.10.43)

Licensed to: lkomorphic Software (#SC_EWVAL_NIGHTLY)

| Done |.ﬂ 11 ,? s

A 1 Popup blocker utilities may prevent the Developer Console

e from appearing, or browser security settings may disallow
JavaScript URLs. Holding the Ctrl key while opening the
console will bypass most popup blockers. Creating a
bookmark for a JavaScript URL will allow you to execute it
by clicking on the bookmark .

13 Isomorphic Software

SmartClient Quick Start

The Results pane of the Developer Console displays:

1 Messages logged by SmaClient or your application code
through the SmartClient logging system. The Logging
Preferencesmenu allows you to enable different levels of
diagnostics in over 30 categories, from Layout to Events to
Data Binding.

1 SmartClient component statistics. As you move the mouse in
the current application, the ID of the current component
under the mouse pointer is displayed in this area. For
example, try mousing over the instructions area for the
demo application; you should see fAhel pCanvaso
Current Event Target.

1 A runtime code evaluation area. You may evaluate
expressions and execute actions from this area. For example,
with the demo application running, try evaluating each of
these expressions:
categoryTree.getSelectedRecord()

helpCanvas.hide()
helpCanvas .show()

The Watch pane of the Developer Console displays a tree of SmartClient
user interface components in the current application. With the demo
application running, this pane appears as follows:

¥2) SmartClient Developer Console - Mozilla Firefox _ O] x|
@ | 3¢ | hitp://localhost:8080/isomorphic/system/hefpers/Log hiri .
Results Watch RPC Server Loge XML WSDL SOL Browser A k=
Observe [Time methods on objects
Object : Method : Trace Method Time Method
Show: [hidden [undrawn [generated
Find component :
D Class Position Drawn Size
= '-[_'_-I pagelLayout HLayout 0,0 780w x 430h -
= :1_:] leftSidelayout SectionStack 20,20 280w x 440h
= -.ﬂ categoryTree TreeGrid 20,41 280w x 195h
|j categoryTree_body TreeGridBody 21,42 278w x 187h =
Ij helpCanvas HTWLPane 20, 261 280w x 198h
= :1_:] rightSideLayout SectionStack 308, 20 451w x 440h
= '-Lj findPane Canvas 308, #1 451w x 60h
[=] findButton IButton 335,58 B0w = 22h
D findForm SearchForm 440, 52 474w x 28h
= '-Lj itemLizt ListGrid 308, 122 451w x 158h
D itemLizt_body GridBody 310, 144 449w x 135h
D izc_ImgButton_0 ImgButten 310,123 Glw x21h
Refresh Inspect
Dane |.j 11 ,g 7

14 Isomorphic Software

SmartClient Quick Start

In the Watch pane, you may:

1 Click on any item in the tr ee to highlight the corresponding
component in the main application window with a flashing,
red-dotted border.

Save ‘ Mews Clear Fitter

1 Right-click on any item in the tree for a menu of operations,
including a direct link to the API reference for that
component 6s cl ass.

|:| izc_DynamicForm_0

= 0l isc_HLay
[£] isc_l Component Log Settings 3
[E isc_| Inspect DOM
[E isc_L Hide
[E] isc_l Bring To Front
(=] isc_L Destroy

|:| izc_Detailiewer_0

1 Right-click on the column headers of the tree to show or
hide columns.

The Developer Console is an essential tool for all SmartClient application
developersand should be open whenever you are working with
SmartClient. For easy access, you should create a toolbar link to quickly
show the Console:

In Firefox /Mozilla :
1. Show your Bookmarks toolbar if it is not already visible (View
Y Toolbars Y Bookmarks Toolbar).

Go to the Bookmarks menu and pickManage Bookmar ksé

Click the New Bookmark button and enter
Ajavascript:isc.showConsole()o0o as the
with whatever name you choose.

4. Drag the new bookmark into the Bookmarks Toolbar folder

15 Isomorphic Software

SmartClient Quick Start

In Internet Explorer:

1. Show your Links toolbar if it is not already visible (View Y
Toolbars Y Links)
2. Type fhjavascript:isc.showConsole()o0 into the Add
3. Click on the small Isomorphic logo in the Address bar and drag
it to your Links toolbar
4. 1 f a dialog appears saying fiYou are adding a fav
not be saf e. Do you want to continue?od, click Ye
5.1 f desired, rename the bookmark (Aiscd is choser
name)
@ f The Developer Console is asso ciated with a single
web browser window at any time. If you have shown
the console for a SmartClient application in one browser
window, and then open an application in another browser
window, you must close the console before you can show it
from the new window.
16 Isomorphic Software

SmartClient Quick Start

Reference

The core documentation for SmartClient is the SmartClient Reference, an
interactive reference viewer implemented in SmartClient. You may access
the SmartClient Reference in any of the following ways:

from the Reference Docs tab of the Developer Console

by right-clicking on a component in the Watch tab of the

DeveloperComss o0l e, and selecting fiShow doc

{1 from the SmartClient Referenc e icon in SDK Explorer Y
DocsY SmartClient Reference

I from the docs/SmartClient_Reference.html launcher in the
SDK

The SmartClient Reference provides integrated searching capabilities.
Enter your search term in the field at top -left, then press Enter. The
viewer will display a list of relevance-ranked links. For example, searching

on Adrago generates the foll owing
@ @ - SmartClient™ Reference SMN° x 8
&« C | @ localhost:8080/isomorphic/system/reference/?id=search%3Ddrag b ¢
drag { Client-Server Inteqgration Search Results
) SmartCiient QuickStart Guide A [Search Resuits SmartClient Enterprise API 11.1d (2017-06-09)

¢ Feature Explorer
& P Filter results...

Feature Explorer Overview

Sc... T Mame Type -
=] Concepts
24 Canvas.useNativeDrag attr -
= @ Client-Server Integration =
)) : 17.5 Canvas.dragTarget attr
Client-side Data Integration
Server DataSource Integration 15 TileGrid.setDragTracker() method
ul
@s Client Archil 15 Canvas.disableTouchScrollingForDrag attr
martClient Architecture
D buga| 15 DataBoundComponent.setDragTracker{) method
ebugging
R Debual 15 ListGrid.setDragTracker() method
emote Debugging
Deploying SmartClient 14.5 mobileDevelopment group
e
14.5 Canvas.dragStart() method

= Persistence Technologies
14.5 EventHandler.setDragTrackerimage(srcl, x, v]) classMethod
Integration with Hibernate

14.5 TileGrid.canDragTilesOQut attr

) _ 14 TreeGrid.canDragRecordsOut attr
@ JPA & Hibemate Relations - . R b

Manual JPA & Hibernate Integration

Integration with JPA

Google Application Engine (GAE)
Click a record in the Grid above to see full docs here.

o) "
. SGL Connection Pooling Shift-click or Control-click to see more than one description ata
Declarative Security time.

Double-click to navigate to a documentation entry.
Custom Server DataSources - You can click and drag the resize bar above to make more room.

Version: 11.1d
Built: 2017-06-09

If you are new to SmartClient, you may want to read the conceptual topics
in the SmartClient Reference for more detail after completing this Quick
Start guide. These topics are indicated by the blue cube icon @) in the
reference tree.

17 Isomorphic Software

resul

t

SmartClient Quick Start

Community Wiki

The wiki is a place where community members and Isomorphic engineers
can work together to add new documentation and new samples-
especially samples and documentation involving third -party products,
where it would not be possible to create a standalone ruming sample in
the SDK.

This is the right place to look for articles on how to integrate with a
specific authentication system, application server, reporting engine,
widget kit, cloud provider or similar major third -party product.
Isomorphic also publish es example code on the wiki before it becomes an
official product sample, or is incorporated as a new product feature.

http://wiki.smartclient.com/

18 Isomorphic Software

http://wiki.smartclient.com/

SmartClient Quick Start

4. Coding

Languages
SmartClient applications may be coded in:

1 XML d for declarative user interface and/or datasource
definitions 1 development in this format requires the
SmartClient Server.

1 JavaScript (JS) & for client -side user interface logic, custom
components, and procedural user interface definition s

1 Javad for data integration when using the SmartClient Java
Server

SmartClient provides multiple layers of structure and services on top of
the JavaScript language, including a real class system, advanced data
types, object utilities, and other language extensions. The structure of
SmartClient JS code is therefore more similar to Java than it is to the free-
form JavaScript typically found in web pages.

To define user interface components, you may use either SmartClient
XML or SmartClient JS. Both formats have their merits:

SmartClient XML

more tools available for code validation
more familiar to HTML programmers

forces better separation of declarative Ul configuration, and
procedural Ul logic

SmartClient JS

more efficient

easier to read when declaative and procedural code must be
combined

works in stand-alone examples (no server)

allows programmatic (runtime) component instantiation

19 Isomorphic Software

SmartClient Quick Start

Each format also has its quirks: In JS, missing or dangling commas are a
common cause of parsing errors. In XML, quoting and escaping rules can
make code difficult to read and write.

@ f Isomorphic currently recommends using
JavaScript (JS) to define your SmartClient user
interface components , for maximum flexibility as your

applications evolve. However, the SmartClient SDK
provides examples in both JS and XML. You can decide
which is appropriate for your style and your specific needs.

If you are new to JavaScript, you will need to be aware that:

1 JavaScript identifiers are case-sensitive. For example,
Button and button refer to different entities. SmartClient
component class names (likeButton) are capitalized by
convention.

1 JavaScript values are not strongly typed, but theyare typed.
For example, myvar=200 setsmyVvar to the number 200, while
myVar="200" setsmyVar to a string.

Headers

Every SmartClient application is launched from a web page, which is

usually called the bootstrap page In the header of this page, you must

load the SmartClientclient-si de engine, speci foy a
and configure the paths to various SmartClient resources.

The exact format of this header depends on the technology you use to
serve your bootstrap page. The minimal headers for loading a
SmartClient-enabled .jsp or .html page are as follows.

Java server (.jsp)

<% @taglib uri ="isomorphic" prefix ="isomorphic" %>
<HTMI><HEAD
<isomorphic:loadISC skin =" Tahoe" />

</ HEAD<BODY¥

Generic web server (.html)

<HTML><HEAD>

<SCRIPT>var isomorphicDir= "../lisomorphic/" ; <ISCRIPT>

<SCRIPT SRG-../isomorphic/system/modules/ISC_Core.js ></SCRIPT>
<SCRIPT SRG-../isomorphic/system/modules/ISC_Foundation.js ></SCRIPT>
<SCRIPT SRG-../isomorphic/system/modules/ISC_Containers.js ></SCRIPT>
<SCRIPT SRG-../isomorphic/system/modules/ISC_Grids.js ></SCRIPT>
<SCRIPT SRG-../isomorphic/system/modules/ISC_Forms.js ></SCRIPT>
<SCRIPT SRG-../isomorphic/system/modules/ISC_DataBinding.js ></SCRIPT>
<SCRIPT SRG-../isomorphic/skins/SmartClient/load_skin.js ></SCRIPT>
</HEAD><BODY>

20 Isomorphic Software

user

nterface

SmartClient Quick Start

If you use the isomorphic:loadiSC tag (available in .jsp pages only),
SmartClient will automatically detect and set the appropriate file paths. If
you use the generic header (which will work in any web page),you may
need to change the file paths tolocate the isomorphic/ directory. This

example assimes that the bootstrap page is located in a directory that is
adjacent to the isomorphic/ directory.

Note that both examples above load all standard modules.Your

application may need only some modules, or may also load the optional
modules discussed in Qiapter 1.

)

1 The SmartClient SDK provides complete .jsp and .html

- template pages in the top-level templates/ directory, for
easy integration with your development environment.

= 1 For information about switching to a different skin or

= using a custom skin, see he Customized Themessection in
Chapter 9, Extending SmartClient .

Components

SmartClient is an object-oriented system. You assemble your web
application GUIs from SmartClient components. These components are
defined as reusableclasses from which you create specific instances.
Component classes and instances provideproperties (aka attributes) that
you can set at initialization, and methods (aka functions) that you can call
at any time in your client -side logic.

You use thecreate() = method to instantiate SmartClient components in
JS code. This method takes as its argument a JavaSdpt object literal 6 a

collection of comma-delimited property:value pairs, surrounded by curly
braces. For example:

isc.Button.create({title: "Click me" , width:200})

For better readability, you can format your component constructors with
one property per line, as follows:

isc.Button.create({
title: "Click me"
width: 200

)

(&)

9 The most common syntax errors in JS code are
missing or dangling commas in object literals. If
you omit the comma after the title value in the example
above, the code will not parse in any web browser. If you
include a comma following the width value, the code will
not parse in Internet Explorer. SmartClient scans for
dangling commas and will log this common error to your

21 Isomorphic Software

SmartClient Quick Start

server output (visible in the terminal window where you
started the server), for easier debugging.

To create a SmartClient component in XML code, you create a tag with
the componentds class name. You can set that comp.
either as tag attributes:

<But ton
titte= "Click me"
width= "200"

/>

or in nested tags:

<Button>
<title>Click me<f/title>
<width>200</width>
</Button>

The latter format allows you to embed JS inside your XML code, e.g., for
dynamic property values, by wrapping it in <Js> tags:

<But ton>
<title>
<JS>myApp.i18n.clickMe</JS>
</title>
<width>200</width>
</Button>

At the page level, SmartClient XML code must be wrapped in
<isomorphic:XML> tagsd see below for an example.

Hello World

The following examples provide the complete codefor a SmartClient
AfiHel |l o Worl do page, in three different but functi

Try recreating these examples in your editor. You can save them in the
examples/ directory of the SmartClient SDK, with the appropriate file
extensions (html or .jsp).

helloworld.jsp (SmartClient JS)

<% @taglib uri ="isomorphic" prefix ="isomorphic" %>
<HTML>
<HEAD
<isomorphic:loadISC skin ="standard" />
</ HEAD
<BOD¥
<SCRIPT>
isc.Button.create({ title: "Hello"

click: ‘isc.say ('Hello World")"
D
</ SCRIPT>
</ BOD¥
</ HTMI>

22 Isomorphic Software

SmartClient Quick Start

helloworldXML.jsp (SmartClient XML)

<%@taglib uri _="isomorphic" prefix ="isomorphic" %>
<HTML>
<HEAD
<isomorphic:loadISC skin ="standard" />
</ HEAD
<BOD¥
<SCRIPT>
<isomorphic:XML>
<Button title= "Hello" click="isc.say('Hello World")" />
</isomorphic:XML>
</ SCRIPT>
</ BOD¥
</ HTMI>

helloworld.html (SmartClient JS)

<HTMI>

<HEAD
<SCRIPT>var isomorphicDir= "../isomorphic/" </ SCRIPT>
<SCRIPT SRG-../lisomorphic/system/modules/ISC_Core.js ></ SCRIPT>
<SCRIPT SRG../lisomorphic/system/modules/ISC_Foundation.js ></ SCRIPT>
<SCRIPT SRG-../lisomorphic/system/modules/ISC_Containers.js ></ SCRIPT>
<SCRIPT SRG../isomorphic/system/modules/ISC _Grids.js ></ SCRIPT>
<SCRIPT SRG-../lisomorphic/system/modules/ISC_Forms.js ></ SCRIPT>
<SCRIPT SRG../isomorphic/system/modules/ISC_DataBinding.js ></ SCRIPT>
<SCRIPT SRG-../lisomorphic/skins/SmartClient/load_skin.js ></ SCRIPT>

</ HEAD

<BOD¥
<SCRIPT>

isc.Button.create({
title: "Hello"
click: "isc.say('Hello World")"
)

</ SCRIPT>

</ BOD¥

</ HTMI>

You can open the.html version directly from your file system (by double -
clicking the filebés icon), provided your
pages to run from your file system.

You must open the jsp versions through your server, as follows:

http://localhost:8080/examples/helloworld.jsp
http ://localhost:8080/examples/helloworldXML.jsp

1 These examples are also provided in the toplevel
templates/ directory d but we highly recommend creating
them yourself for the learning experience.

Deploying
For instructions on deploying a SmartClient application, see:

1 SmartClient Reference i Concepts > Deploying SmartClient

The next chapter explains how to configure and manipulate SmartClient
visual components in more detail.

23 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..iscInstall

SmartClient Quick Start

5. Visual Components

SmartClient provides two families of visual components for rich web
applications:

|l

Independent visual components , which you will create
and manipulate directly in your applications.

Managed form controls , Which are created and managed
automatically by their Aparento

This chapter provides basic usage irformation for the independent
components only. Managed form controls are discussed in more detail in
Chapter 6, Data Binding , and especially Chapter 7 Layout .

Component Documentation & Examples

Visual components encapsulate and expose most of the public capabilities
in SmartClient, so they have extensive documentation and examples in
the SmartClient SDK:

e

n
[
L

1 SmartClient Ref erence T For component interfaces
(APIs), seeClient Reference. Form controls are sub-listed
under Client Reference > Foms > Form ltems.

i Component C ode Examples 1 For live examples of
component usage, see the SmartClientShowcase
(Examples Y Showcasein the SDK Explorer, or
http://localhost:8080/showcase/ from a running
SmartClient server).

1 The remainder of this chapter describes basic management
and manipulation of independent visual component S
only. For information on the creation and layout of
managed form controls, seeChapters 6 (Data Binding) and

7 (Layout), respectively.

24

Isomorphic Software

form or

editab

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1_17_127
http://localhost:8080/showcase/

SmartClient Quick Start

ldentifying Components

You can identify SmartClient components by setting their 1D property:

isc.Label.create({
ID: "helloWorldLabel"
contents: "Hello World"

)

By default, component IDs are created in the global namespace, so your

client-side code may referencehelloworldLabel ~ to manipulate the Label

instance created above. You should assign unique IDs that are as
descriptive as possible of the component
common naming conventions are:

T include the c osochasbugom tortbte) t ype (

T include the compchasedaée s acti on (

1 include the datasource the component affects uch as
salesOrder). For example, salesOrderUpdateBtn

You can alternatively manage your components by saving the internal
reference that is returned from the create() call. For example,

var hellowWorldLabel = isc.Label.create({
contents: "Hello World"

»;

In this case, a unique ID will be assigned to the canponent. The current
internal format for auto -assigned IDs isisc_ClassName_ID_#

Manual Layout

You can configure and manipulate SmartClient components by setting
component properties and calling component methods. The most basic
properties for a visual component involve its position, size, and overflow:
left

top

width

height

overflow

= =4 -4 -4 -4 -2

position

25 Isomorphic Software

SmartClient Quick Start

left andtop take integer values, representing a number of pixels from the

top-l eft of the component s cLoout,ai ner (typically a \
Window, Or TabSet). width and height take integer pixel values (default 100

for most classes), and can also take string percentage values (e.g. "50%.

For example:

isc.Label.create({
left: 200, top: 200,
width: 10,
contents: "Hello World"

b

In this example, the specified width is smaller than the contents of the

| abel, so the text wraps and fAoverflowsodo the spec
behavior is controlled by the overflow property, which is managed

automatically by most components. You may need to change this setting

for Canvas, Label , DynamicForm , DetailViewer , Or Layout components

whose contents you want to clip or scroll instead. To do this, set the

overflow property to "hidden" (clip), "scroll" (always show scrollbars),

or "auto" (show scrollbars only when needed). For example:

isc.Label.create({
left: 200, top: 200,

width: 20,
contents: "Hello World"
overflow: "hidden"

b

By default, SmartClient visual components are positioned at absolute
pixel coordinates in their containe rs. If you need to embed a component
in the flow of existing HTML, you may set its positon property to

“relative" . For example:
 first item

<SCRIPT>
isc.Button.create({
title: "middle item"
position: "relative”
D
</SCRIPT>

 last item

1 If you work directly with HTML or CSS code, you
must test your code on all supported browsers for
inconsistencies . In particular, the same HTML and CSS
layout code can produce many different results in different
browsers, browser versions, and DOCTYPE modes.
Whenever possible, you should consider using SmartClient
components and layouts to insulate you from browser-
specific interpretations of HTML and CSS.

26 Isomorphic Software

SmartClient Quick Start

In most applications, you will want more flexible, dynamic layo ut of your
visual components. Chapter 7 (Layout) introduces the SmartClient Layout
managers, which you can use to automatically size, position, and reflow
your components at runtime.

Drawing, Hiding, and Showing Componerts

In a SmartClient-enabled application, you may load hundreds of user
interface components in the bootstrap page, and then navigate between
views on the client by hiding and showing these components. The basic
APIs for hiding and showing components are:

 autoDraw
1 show()
1 hide()

The autoDraw property defaults to true , SO a component is usually shown
as soon as yolcreate() it. SetautoDraw to false to defer showing the
component. For example:

isc.Button.create({
ID: "hiddenBtn"
title: "Hidden"
autoDraw: false

)

To show this button:

1. Open the SmartClient Developer Console from the page that
has created the button.

2. Type hiddenBtn.show() in the JS evaluation area.
3. Click the AEval o button to execute t
e 1 For more information on architecting your applications for
high-performance, client-side view navigation, see

SmartClient Reference Y ConceptsY SmartClient
Architecture.

Handling Events

SmartClient applications implement interactive behavior by responding to
events generated by their environment or user actions. You can provide
the logic for hundreds of different events by implementing event
handlers.

27 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..smartArchitecture
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..smartArchitecture

SmartClient Quick Start

The most common SmartClient component event handlers include:

1 click (for buttons and menu items)
9 recordClick (for listgrids and treegrids)

1 change (for form controls)

1 tabSelected (for tabsets)

Component event handlers are set using a special type of property called a
string method . These properties may be specified either as:

9 astring of JavaScript to evaluate when theevent occurs; or

1 aJavaScriptfunction to call when the event occurs
For example:

isc.Button.create({
ID: "clickBtn"
title: “click me"
click: “isc.warn('button was clicked")"

)

Is functionally identical to:

isc.Button.create({

ID: " clickBtn"
title: "click me"
click: function 0f{
isc.warn(‘'button was clicked');

}
b

For event handling in applications, you can set your event handlers to
strings that execute external functions. This approach enables better
separation of user interface structure and logic:

isc.Button.create({
ID: “clickBtn"
title: "click me" ,
click: “clickBtnClicked()"
)

function clickBtnClicked() {
isc.warn('button was clicked');

)]
e 9 For more information on available SmartClient events, see:

1 SmartClient Reference i Component-specific APIs under
Client Reference

1 SmartClient Reference i EventHandler APIs under Client
ReferenceY SystemY EventHandler

28 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..EventHandler
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..EventHandler

SmartClient Quick Start

6. Data Binding

Databound Components

You canbind certain SmartClient components to Data Sources that
provide their structure and contents. The following visual components are
designed to display, query, and edit structured data:

Visual Display |Query |Edit
Component Data Data Data
DynamicForm v v
ListGrid v v v
TreeGrid v v v
CubeGrid (Analytics option) v v
DetailViewer v

TileGrid v

ColumnTree v

Databound components provide you with both automatic and manual
databinding behaviors. For example:

1 Automatic behavior i A databound ListGrid will generate
Fetch operations when a user scrolls the list to view more
records.

1 Manual behavior i You can callremoveSelectedData() ona
databound ListGrid to perform Remove operations on its
datasource.

e 9 This chapter outlines the client-side interfaces that you
may use to configure databound components and interact
with their underlying datasources. Chapter 8 (Data
Integration) outlines the interfaces for server-side
integration of datasources with your data and service tiers.

29 Isomorphic Software

SmartClient Quick Start

Fields

Fields are the building blocks of databound components and datasources.
There are two types of field definitions:

T Component

fields provide presentation

attri butes for

databound visual components (such astitle, width,
alignment). Component fields are discussed immediately

below.

i DataSource

fields provide metadata describing the

objects in a particular datasource (such asdata type, length,
required). DataSource fields are discussedin DataSources.

Component fields display as the following sub-elements of your

databound components:

Component

Fields

DynamicForm

form controls

ListGrid

columns & form controls

TreeGrid

columns & form controls

CubeGrid (Analytics option)

facets (row & column headers)

DetailViewer

rows

TileGrid

rows with in tiles

Calendar

event duration and description

You can specify the displayed fields of a visual component via thefields
property, which takes an array of field definition objects. For example:

isc. ListGrid.create({
ID: "contactsList"
left: 50, top: 50,
width: 300,
fields: [

{name: "salutation"
{name: "firsthame"
{name: "lastname"

b

, title:
, title:
, title:

"Title" },
"First Name" },
"Last Name" }

30

Isomorphic Software

SmartClient Quick Start

Try reproducing this example. When you load it in your web browser, you
should see a ListGrid that looks like this:

Title First Marne Last Mame | |

Mo items ta shaw,

The name property of a field is the special key that connects that field to
actual data values. For a simpleListGrid ~ Or DetailvViewer , you can specify
data values directly via the data property, which takes an array of record
objects. Add this code to thelListGrid definition above (remembering to
add a comma between thefie Ids and data properties):

data: [

{salutation: "Ms" , firsthname: "Kathy" ,lastname: "Whitting" },
{salutation: "Mr" , firstname: "Chris" , lastname: "Glover" 1},
{salutation: "Mrs" , firsthname: "Gwen", lastname: "Glover" }

]

Now when you load this example, youshould see:

Title First Marne Last Marme | |

Ms K athy Whitting

Mr Chris Glover

Mrs Gwen Glover

@ 1 Thi_s approgch (di_rectly setting data) is a_ppropriate
mainly for lightweight, read -only uses (i.e., for small,

static lists of options). When your components require
dynamic data operations, data-type awareness, support for
large datasets, orintegration with server -side datasources,
you will set the dataSource property instead to bind them
to DataSource Objects. SeeDataSources for details.

31 Isomorphic Software

SmartClient Quick Start

The basic field definitions in the ListGrid above are reusable across
components. For example, you could copy these field definitions to create
a DynamicForm :

isc. DynamicForm.create({
ID: "contactsForm"
left: 50, top: 250,

width: 300,

fields: [
{name: "salutation" , title: "Title" },
{name: "firsthame" , title: "First Name" },
{name: "lasthame" |, title: "Last Name" }

]
b

which will display as:

Title : |

First Name : I

Last Marme : I

Q 1 For complete documentation of component field properties
(presentation attributes), see:

9 SmartClient Reference i Client ReferenceY Forms Y
Form Items (all entries)

1 SmartClient Reference i Client ReferenceY Grids Y
ListGrid Y ListGridField

DataSource field properties (data attributes) are discussed in
DataSources.

Form Controls

Field definitions also determine which form controls are presented to
users, for editable data values in forms and grids. You can specify the
form control to use for a field by setting its editorType property.

The default editorType is "text* , which displays a simple text box editor.
This control is an instance of the Textitem class.

If a component is bound to a DataSource, it will automatically display
appropriate form controls based on attributes of its DataSource fields (e.g.
checkbox for boolean values, date picker for date values, etc). However,
there may be more than one way to present the same value. For example,
a dropdown control (selectitem) and a set of radio buttons

(radioGroupltem) are both appropriate for presenting a relatively small set
of values in a form.

32 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1_17_127
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1_17_127
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=object..ListGridField
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=object..ListGridField

SmartClient Quick Start

To override the default form contro | for a field, set editorType to the class
name for that control, in lower case, minus the "item" . For example, for a
Checkboxitem , you can SeteditorType :"checkbox"

The following code extends the previousDynamicForm example to use an
assortment of common form controls, specified by editorType

isc.DynamicForm.create({

ID: "contactsForm" , left: 50, top: 250, width: 300,
fields: [
{name: "salutation" , title: "Title" , editorType: "select"

valueMap:["Ms", "Mr", "Mrs"]

{name: "firstname" , title: "First Name" },

{name: "lastname" |, title: "Last Name" 1},

{name: "birthday" , title: "Birthday" , editorType: "date" },

{name: "employment" |, title: "Status" , editorType: "radioGroup”
valueMap:["Employed" , "Unemployed"]

h

{name: "bio" |, title: "Biography" , editorType: "textArea" },

{name: "followup" , title: "Follow up" , editorType: "checkbox" }

]
)

This form will appear as follows:

Title : I 2

First Marme : I

Last Mame : I

Birthday : [Apr =||6 | [z005 - (75

" Emploved
Status
" Unemploved
Biography :
[~ Fallaw up
e 9 For more information on the layout of managed form

cont r olFamLagoete Chapter 7(Layout).

33 Isomorphic Software

SmartClient Quick Start

DataSources

SmartClient DataSource objects provide a presentation-independent,
implementation -independent description of a set of persistent data fields.
DataSources enable you to:

1 Separate your data model attributes from your presentation
attributes.

1 Share your data models across multipleapplications and
components, and across both client and server.

1 Display and manipulate persistent data and data-model
relationships (e.g. parent-child) through visual components
(such asTreeGrid).

1 Execute standardized data operations (fetch, sort, add,
update, remove) with built -in support on both client and
server for data typing, validators, paging, unique keys, and
more.

1 Leverage automatic behaviors including data loading,
caching, filtering, sorting, paging, and validation.

A DataSourcedescriptor provides the attributes of a set of DataSource
fields. DataSource descriptors can be specified directly in XML or JS
format, or can be created dynamically from existing metadata (for more
information, see SmartClient Reference Y Client ReferenceY Data
Binding Y DataSourceY Creating DataSources). The XML format is
interpreted and shared by both client and server, while the JS format is
used by the client only. Note that use of the XML format requires the
optional SmartClient Server.

There arefour basic rules to creating DataSource descriptors:

1. Specify a unigue DataSourcelD attribute. The ID will be used to
bind to visual components, and as a default name for object
relati onal (table) bindingosd atnod test data fil es.
the ID is a good convention to easily identify DataSource
references in your code.

2. Specify a field element with a unique name (in this DataSource)
for each field that will be exposed to the presentation layer.

3. Specify atype attribute on each field element (see below for
supported data types).

4. Mark a field with primaryKey="true" . The primarykey field must
have aunique value in each dataobject (record) in a
DataSource. AprimaryKey field is not required for read-only
DataSources, but it is a good general practice to allow forfuture
add, update , or remove data operations. If you need multiple
primary keys, see Chapter LITips.

34 Isomorphic Software

SmartClient Quick Start

Following theser ul e s, a DataSource

earlier in this chapter looks like:

<DataSource ID= "contactsDS" >
<fields>
<field primaryKey= "true”
type= "sequence" />
<field name= "salutation"
<valueMap>
<value>Ms</value>
<value>Mr</value>
<value>Mrs</value>
</valueMap>
<[field>
<field name=
<field name=
<field name=
<field name=
<valueMap>
<value>Employed</value>
<value>Unemployed</value>
</valueMap>
<[field>
<field name=
<field name=
<[fields>
</DataSource>

name="id" hidden= "true"

tittle= "Title"

"First Name"
"Last Name"
"Birthday"

"Status”

title=
title=
title=
title=

"firstname"
"lastname"
"birthday"
"employment”

type=

"Bio"
title=

"bio" title=
"followup"

type= "text"
"Follow up"

length=

For your convenience, this descriptor is already saved in
shared/ds/contactsDS.ds.xml

type= "text"

type= "text"
type= "date"
type= "text"

descri

"text" />

/>
/>
>

"2000" />
type= "boolean" />

. Note that this code is the entire content of

the file d there are no headers,<HTML>tags, or other wrappers around the

DataSource descriptor.

o

1 Every DataSource field must specify atype , and editable

ptor f

e

DataSources(i. e., supporting Add, Update, or Remove
operations) must specify exactly one field with
primaryKey="true"

For more information on defining, creating, and locating
DataSources, seeéSmartClient Reference Y Client
ReferenceY Data Binding Y DataSource. TheCreating

DataSources and Client Only DataSources subtopics
provide additional detail.

To | oad thi

S

DataSource in previous

tag inside the <SCRIPT> tags, before the ListGrid and DynamicForm

components are created:

<isomorphic:loadDS

ID ="contactsDS" />

35

Isomorphic Software

ficor

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..DataSource
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..DataSource
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..dataSourceDeclaration
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..dataSourceDeclaration
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..clientOnlyDataSources

SmartClient Quick Start

Now the components can reference this shared DataSource via their
dataSource properties, instead of specifying fields . The complete code for
a page that binds a grid and form to this DataSource is:

<%@tag lib uri ="isomorph ic" prefix ="isomorphic" %>
<HTMI><HEAD
<isomorphic:loadISC />
</ HEAD><BODY¥
<SCRIPT>
<isomorphic:loadDS ID= "contactsDS" />

isc.ListGrid.create({
ID: "contactsList"
left: 50, top: 50,
width: 500,
dataSource: contactsDS

»

isc.DynamicForm.create G
ID: "contactsForm" ,
left: 50, top: 200,
width: 300,
dataSource: contactsDS

b
</ SCRIPT>
</ BOD¥</ HTML>

This example entirely replacesfields with a dataSource for simplicity.
However, these two properties will usually co-exist on your databound
components. The component field definitions in fields specify
presentation attributes, while the DataSource field definitions specify data
attributes (see table below).

SmartClient merges your component field definitions and DataSource
field definitions based on thename property of the fields. By default, the
order and visibility of fields in a component are determined by the fields
array. To change this behavbr, see useAllDataSourceFields in the
SmartClient Reference.

36 Isomorphic Software

SmartClient Quick Start

Common DataSource field properties include:

Property

Values

name

unique field identifier (required on every
DataSource field)

type

texto | fAintegero | nfloat
dateo dat éiti meo | iti meo
sequenceo | ibi naryo

ot St 3

See reference for full list of field types.

length

maximum length of text value in characters

hidden

true; whether this field should be entirely
hidden from the end user. It will not appear in
the default presentation, and it will not appear
in any field selectors (e.g. the column picker
menu in a ListGrid) available to the end user.

required

true | false

valueMap

an array of values, or an object containing
storedValue:displayValue pairs

primaryKey

true; specifies whether this is the field that
uniquely identifies each record in this
DataSource (thatis, it must have aunique value
for each record). The primaryKey field is often
specified with type="sequence" and
hidden="true" , to generate a unique internal
key. For multiple primary keys, see Chapterl],

Tips.

foreignKey

a reference to a field in another DataSource
(for example, dsName.fieldName)

rootValue

for fields that establish a tree relationship (by
foreignkey), this value indicates the root node
of the tree

L

L

For complete documentation of the metadata properties
supported by SmartClient DataSources and components,
seeSmartClient Reference Y Client ReferenceY Data
Binding Y DataSource Y DataSourceField.

For DataSource usage examples, see the descriptors in
examples/shared/ds/ . These DataSources are used in
various SmartClient SDK examples, including the
SmartClient Showcase

For an example of a DataSource relationship using
foreignKey , see
examples/databinding/tree_databinding.jsp (TreeGrid

Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=object..DataSourceField
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=object..DataSourceField

SmartClient Quick Start

Ul) and shared/ds/fem ployees.ds.xml
DataSource).

(associated

As ment i onFouh Cantrals@r aov e, dat abound
automatically display appropriate form controls based on att ributes of
their DataSource fields. The rules for this automatic selection of form

controls are:

Field attribute Form control

valueMap provided Selectitem (dropdown)

type:"boolean”

Checkboxltem (checkbox)

type:"date" Dateltem (date control)

length > 255 TextArealtem (large text box)

You can override this automatic behavior by explicitly setting editorType
on any component field.

DataSource Operations

SmartClient provides a standardized set of data operations that act upon

DataSources:

Operation

Methods Description

Fetch

provided criteria

f etchDat {retrieves records from the
datasource that exactly match the

fi It erDalretrieves records from the
datasourcethat contain (substring
match) the provided criteria

Add

values

addDat a({creates a new record in the
datasource with the provided

Update

values

updat eDaypdates arecord in the
datasource with the provided

Remove

removeDaldeletes arecord from the
datasource that exactly matches
the provided criteria

38

Isomorphic Software

component s

Wi

SmartClient Quick Start

These methods each take three parameters:

1 adata object containing the criteria for a Fetch or Filter
operation, or the values for an Add, Update, or Remove
operation

9 acallback expression that will be evaluated when the
operation has completed

1 aproperties object containing additional parameters for
the operationd timeout length, modal prompt text, etc. (see
DSRequest in the SmartClient Reference for details)

You may call ary of these five methods directly on aDataSource o0bject, or
on a databound ListGrid ~ or TreeGrid . For example:

contactsDS.addData(

{salutation: "Mr" , firstname: "Steven" ,lastname: "Hudson" },
"say(data[0].firsthame + 'added to contact list')"
{prompt: "Adding new contact..." }

or

contactsList.fetchData(
{lastname: "Glover" }

)i

1 DataSource operations will only execute if the
DataSource is bound to a persistent data store. You
can create relational database tables as a data store for
rapid developmentby using the @Al mport Dat
section in the SmartClient Admin Console. For deeper
integration with your data tiers, see Chapter 8 (Data
Integration).

(&)

DataBound Component Operations

In addition to the standard DataSource operations listed above, you can
perform Add and Update operations from databound form components
by calling the following DynamicForm methods:

Method Descripti on

editRecord() starts editing an existing record

editNewRecord() | starts editing a new record

saveData() saves the current edits (Add new
records; Update existing records)

39 Isomorphic Software

SmartClient Quick Start

Databound components also provide several convenience methods for
working with the selected records in a databound grid:

Convenience Method

listGrid.removeSelectedData()

dynamicForm.editSelectedData(listGrid)

detailViewer.viewSelectedData(listGrid)

exa mples/databinding/component_databinding.jsp shows most of
these DataSource and databound component methods in action,
with a ListGrid, DynamicForm, and DetailViewer that are
dynamically bound to several different DataSources.

|II
[

e For more information, see the Datasource Operations, Databound
Components, and Databound Component Methods subtopics
under SmartClient Refer enceY Client ReferenceY Data

Binding .

Data Binding Summary

This chapter began by introducing Databound Components, to build on
the concepts of the previouschapter (Visual Components). However, in
actual development, DataSources usually comefirst . The typical steps to
build a databound user interface with SmartClient components are:

5. Create DataSource descriptors (.dsxml or js files),
specifying data model (metadata) properties in the DataSource
fields

6. Back your DataSources with an actual data store. The

SmartClient Admin Console GUI creates and populates
relational database tables for rapid development. Chapter 8
(Data Integration) describes the integration points for binding
to production object models and data stores.

7. Load DataSource des criptors in your SmartClient -enabled
pages with theisomorphic:loadds tag (for XML descriptors in
JSP pages) or clientonly JS format. SeeCreating DataSources
in the SmartClient Reference for more information.

8. Create visual components that support databin ding
(primarily form, grid, and detail viewer components).

9. Bind visual components to DataSources using the
dataSource property and/or setDataSource() ~ method.

40 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1_21
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1_21

SmartClient Quick Start

10. Modify component -specific presentation properties in
each dat aboundeds camgg.onent 6s

11. Call databound component methods (e.g.fetchData) to
perform standardized data operations through your databound
components.

DataSources effectively hide the backend implementation of your data
and service tiers from your front -end presentationd so you can change the
back-end implementation at any time, during development or post -
deployment, without changing your client code.

SeeChapter 8 (Data Integration) for an overview of server-side
integration points that address all stages of your application lifecycle.

41 Isomorphic Software

SmartClient Quick Start

/. Layout

Component Layout

Most of the code snippets in this guide create just one or two visual
components, and position them manually with the left ,top , width , and
height properties.

This manual layout approach becomes brittle and complex with more
components. For example, you may want to:

consistently position your components relative to each other

allocate available space based on relative measures (e.g.
30%)

1 resize and reposition components when other components
are resized, hidden, shown, added, removed, or reordered

9 resize and reposition components when the browser window
is resized by the user

SmartClient includes a set of layout managers to provide these and other
automatic behaviors. The SmartClient layout managers implement
consistent dynamic sizing, positioning, and reflow behaviors that cannot
be accomplished with HTML and CSS alone.

The fundamental SmartClient layout manager is implemented in the
Layout class, which provides four subclasses to use directly:

1 HLayout d manages the positions and widths of a list of
components in a horizontal sequence

1 vLayout 8 manages the positions and heights of a list of
components in a vertical sequence

1 Hstack 0 positions a list of components in a horizontal
sequence, but does not manage their widths

i vstack 0 positions a list of components in a vertical
sequence, but does not manage their heights

42 Isomorphic Software

SmartClient Quick Start

These layout managers are themselves visual components, so you can
create and configure them the same way you would create a Label, Button,
ListGrid, or other independent component.

The key properties of a layout manager are:

Layout property Description

members an array of components managed by this
layout

membersMargin number of pixels of space between each

member of the layout

layoutMargin number of pixels of space surrounding the

entire layout

The member components also support additional property settings in the
context of their parent layout manager:

Member
property

Description

layoutAlign

alignment with respect to the breadth axis of
the layout (“left* , "right" , "top" , "bottom"
or "center")

showResizeBar determines whether a drag-resize bar

appears between this component and the
next member in the layout
(true | false)

width

or
height

layout-managed components support a""
value (in addition to the usual number and
percentage values) for their size on the
length axis of the layout, to indicate that

they should take a share of the remaining
space after fixed-size components have been
counted (this is the default behavior if no
width/height is specified)

.-
=

Components that automatically size to fit their

contents will not be resized by a layout manager.

By default, Canvas, Label , DynamicForm , DetailViewer , and
Layout components have overflow:"visible" , SO they
expand to fit their contents. If you want one of these
components to be sized by a layout instead, you must set
its overflow property to "hidden" (clip), "scrol" (always
show scrollbars), or "auto" (show scrollbars only when
needed).

43

Isomorphic Software

SmartClient Quick Start

You can specify layout members by reérence, or by creating them in-line,
and they may include other layout managers. By nesting combinations of
HLayout and VLayout , you can create complex dynamic layouts that would
be difficult or impossible to achieve in HTML and CSS.

You can use the specialayoutSpacer component to insert extra space into
your layouts. For example, here is the code to create a basic page header
layout, with a left -aligned logo and right-aligned title:

isc.HLayout.create({
ID: "myPageHeader" ,
height :50,
layoutMargin:10,
members:[
isc.Img.create({src: "myLogo.png" }),
isc.LayoutSpacer.create({width: ",
isc.Label.create({contents: "My Title" })
]
)

f See the SmartClient Demo Application (SDK Explorer Y

Getting Started Y Demo App) for a good example of
layouts in action

e 1 For more ir_llformation, see SmartClient Reference Y Client
ReferenceY Layout.

Container Components

In addition to the basic layout managers, SmartClient provides a set of
rich container components. These include:

9 Sectionstack 8 to manage multiple stacked, user-expandable
and collapsible6secti onsd6 of components

1 TabSet d to manage multiple,user-s el ect abl e 6panes?d
components in the same space

1 windowd to provide free-floating, modal and non -modal

views that the user can move, resize, maximize, minimize, or
close

o5 f See the SmartClient Demo Application (SDK Explorer Y
Getting Started Y Demo App) for examples of
SectionStack ~ and TabSet components in action.

e 9 For more ir_llformation, see SmartClient Reference Y Client
ReferenceY Layout.

Isomorphic Software

of

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1_18
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1_18
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1_18
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1_18

SmartClient Quick Start

Form Layout

Data entry forms have special layout requirementsd they must present
their controls and associated labels in regularly aligned rows and
columns, for intuitive browsing and navigation.

When form controls appear in a DynamicForm , their positions and sizes are

controlled by the SmartClient form layout manager . The form layout
manager generates a layout structure similar to an HTML table. Form
controls and their titles are rendered in a grid from left -to-right, top -to-
bottom. You can configure the high-level structure of this grid wi th the
following DynamicForm properties:

DynamicForm

property

Description

numcCols

Total number of columns in the grid, for form
controls and their titles. Set to a multiple of 2,
to allow for titles, so numCols:2 allows one
form control per row, numCols:4 allows two
form controls per row, etc.

titteWidth

Number of pixels allocated to each title
column in the layout.

colWidths

Optional array of pixel widths for all columns
in the form. If specified, these widths will
override the column widths calculated by the
form layout manager.

You can control the positioning and sizing of form controls in the layout
grid by changing their positions in the fields array, their height and
width properties, and the following field properties:

Field De scription

property

colSpan number of form layout columns occupied by this
control (not counting its title, which occupies
another column)

rowSpan number of form layout rows occupied by this
control

startRow whether this control should always start a new
row (true | false)

endRow whether this control should always end its row
(true | false)

showTitle whether this control should display its title
(true | false)

45

Isomorphic Software

SmartClient Quick Start

Field De scription

property

align horizontal alignment of this control within its area
of the form layout grid ("left", "right", or "center")

= f SeeShowcaseY Forms Y Layout for examplesof usage of
these properties

You can also use the following special form items to include extra space
and formatting elements in your form layouts:

1 header

1 blurb

1 spacer

1 rowSpacer

To create one of these special controls, simply include a field definition
whosetype property is set to one of these four names. See the properties
documented under headerltem , blurbltem , spaceritem , and rowSpacerltem
for additional control.

e For more information on form layout capabilities, see:

9 SmartClient Reference i Client ReferenceY Forms
Y DynamicForm

q _S_.martCIient Reference i Client ReferenceY Forms
Y Form Items Y Formlitem

46 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..DynamicForm
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..DynamicForm
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..DynamicForm
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..FormItem
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..FormItem
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..FormItem

SmartClient Quick Start

8. Data Integration

SmartClient DataSources provide a dataprovider -agnostic interface to
databound components, allowing those components to implement
sophisticated behaviors that can be used with any data provider. In this
chapter, we explain how to integrate a DataSource with various
persistence systems so that the operations initiated by databound
components can retrieve and modify persistent data.

DataSource Requests

When a visual component, or your own custom code,attempts to use a
DataSource operation, aDSRequest (DataSource Request)is created
representing the operation. A Dat a | n tisethge pracess of fulélling
that DSRequest by creating a corresponding DSResponse (DataSource
Response), by using a variety of possible approaches to connect to the
ultimate data provider.

There are two main approaches tofulfilling DataSource Requests:

1 Server -side integration (SmartClient Server
Framework) : DataSource requests from thebrowser arrive
as Java Objects on the server. You deliver responses to the
browser by returning Java Objects. This is the simpler and
more powerful approach.

1 Client -side integratio n: DataSource requests arrive as
HTTP requests which your server code receives directly (in
Java, you use theServlet APl or .jsp files to handle the
requests). Responses are sent as XML or JISONwhich you
directly generate.

47 Isomorphic Software

SmartClient Quick Start

The possible approaches todata integratio n are summarized in the
following diagram. Paths 2, 3 and 4 are clientside integration
approaches,while path 1 includes all serverside integration approaches.

client server
SQL DataSource
{built-in}
SmartClient @ Hibernate DataSource
DSRequest {built-in}
©
DataSource
operation -+ Custom DataSource
User Action (D5Request) >
@&.g. open TreeGrid
Fetch
JSON)
Add @ operation 2L AEE
™y
Program Action Update GJ'
&.g. userList.addDatal) oy
4
Remove = Al XML service
operation
Lol L"'SQAP WSDL/SOAP service
operation
aperation format data provider

SmartClient Server Framework

Path 1 makes use of the SmartClient 8rver Framework. Available with
Pro edition and above, the server framework is a set of Java librariesand
servlets that can be integrated with any pre-existing Java application.

Unless you are forced to use a different approach (for example, you are
not using a Java-based server, and cannot deploy a Javebased server in
front of your existing server), itis highly recommended that you use the
SmartClient Server Framework for data integration. The server
framework delivers an immense range of functionality that compli ments
any existing application and persistence engine. Chapter9, SmartClient
Server Framework , provides an overview.

If you cannot use the SmartClient Server Framework, the bestapproaches
for data integration are covered later in this chapter.

48 Isomorphic Software

SmartClient Quick Start

DSRequests and DSResponses

Regardless of the data integration approach used, the data in the request
and response objects has the same meaning.

The key members of aDSRequest object are:

data : the search criteria (for i f e t, ¢ hnde)w

record values (fAac
ffupdated) or criteria for h t

r
the records
sortBBy :requested sort direction for the date
startRow and endRow: the range of records to fetch (if paging is actve)

oldvalues : valuesof the record before changes were made, for checking
for concurrentedits (al | operations but #Afetcho)

The key members of aDSResponse object are:

status: whether the request succeeded or encountered a validation or
other type of error

data: t he matching recoratsayéedr (AAddoho), ¢
Aupdateodo), or deleted record (firemoveo)

startRow and endRow: the range of records actually returned (if paging is
active)

totalRows: the total number of records available

errors : for a validation error response, fields that were invalid and error
messages for each

Request and Response Transformation

If you are using the SmartClient Server Framework with one of the built -
in DataSource types (such as SQL or JPA/Hibernate), you will not need to
do any request or response transformation work and can proceed directly
to Chapter 9, SmartClient Server Framework .

If you cannot use the server framework, but you are free to define the
form at and content of messages passed between the browser and your
server, the simplest data integration approach is the RestDataSource class.

49 Isomorphic Software

SmartClient Quick Start

The RestDataSource performs the four core DataSource operations using a
simple, well-documented protocol of XML or JSON requests and
responses sent over HTTP. The HTTP requests sent by the client will
contain the details of the DSRequest object and your server-side code
should parse this request and output an XML or JSON formatted

response containing the desired properties for the DSResponse.

If, instead, you are required to integrate with a pre -existing service that
defines its own HTTP-based protocol, you can configure asubclass of the
DataSource class to customize the HTTP request format and the expected
format of responses.

For services that return XML or JSON data (including WSDL), you can
specify XPath expressions indicating what part of the data should be
transformed into dsResponse.data . If XPath expressions are not sufficient,

you can override DataSource.transformRequest() and
DataSource.transformResponse() and add Java code to handlethose
cases.

These same two APIs (ransformRequest and transformResponse) enable
integration with formats other than XML and JSON, such as CSV over
HTTP or proprietary message formats.

Finally, setting DataSource.dataProtocol to DSProtocol .CLIENTCUSTOM
prevents a DataSource from trying to directly send an HTTP request,
allowing integrat ion with data that has already been loaded by a third
party communication system, or integration in-browser persistence
engines such as HTMLS5 localStorage orin-browser SQLite databases

e To learn more about using the RestDataSource and client-side
data integration options, see:

1 SmartClient Referencei Client Reference > Data
Binding > RestDataSource

1 SmartClient Referencei Concepts > Client-Server
Integration

For a live sample of RestDataSource showing sample
responses, see:

L

T SmartClient Showcase

http://www.smartclient.com/index.jsp#featured restfulds

50 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..RestDataSource
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..RestDataSource
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..clientServerIntegration
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..clientServerIntegration
http://www.smartclient.com/index.jsp#featured_restfulds

SmartClient Quick Start

Criteria, Paging, Sorting and Caching

SmartClient Ul components such as theListGrid provide an interface
that allows an end user to search data, sort data, and page through large
datasets. As this interface is used, the Ul component generateSRequests
that will contain search criteria , requested sort directions and requested
row ranges.

However, SmartClient does not require that a data provider implement all

of these capabilities. I n fact, SmartCli
response to the fAfet choarchipgeandsoring n, and i
behaviors within the browser.

If a data provider cannot implement paging and sorting behaviors, it is
sufficient to simply ignore the startRow , endRow and sortBy attributes of
the DSRequest and return a DSResponse containing all data that matches
the provided criteria, in any order. SmartClient will perform sorting
client-side as necessary. This does not need to be configured in advande
a data provider can decide, on a caseby-case basis, whether to simply
return all data for a given request.

If a data provider also cannot implement the search behavior, the

DataSource can be set tacacheAllData . This means that the first time any

data is requested, all data will be requested (specifically, aDSRequest will

be sentwith no search criteria). SmartClient will then perform searches

within the browser. Data modification r
Aremoved operations)iiar e fsfteicitlh r saanjfthvdn o rer
cache is maintained.

Q To learn more about searding, sorting, paging and caching
behaviors, see:

1 SmartClient R eferencei Client Reference > Data
Binding > ResultSet

T SmartClient Reference i Client Reference > Data
Binding > DataSource.cacheAllData

Authentication and Authorization

Securing SmartClient applications is done in substantially the same way
as standard web applications. I n fact, ¢
actually simplifies the process and makes security auditing easier.

For example, enabling HTTPS requires no special configuration. Simply

ensure that any URLs provided to SmartClient do not include an explicit
Ahttp:// 06 at,anddlesrdyess i reqoestsnfgrimages and so

forth wildl automatically wuse the fAhttps:

51 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..ResultSet
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..ResultSet
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSource.cacheAllData
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSource.cacheAllData

SmartClient Quick Start

Although it is straightforward to build a login interface in SmartClient, it
is generally recommended that you implement your login page as a plain
HTML page, due to the following advantages:

9 interoperable/single sign -on capabled if your application
may need to participate in single sign-on environment (even
in the distant future), you will be in a better position to
integrate if you are making minimal assumptions about the
technology and implementation of the login page

1 login page appears instantlyd the user does nothave to wait
for the entire application to download in order to see the
login page and begin entering credentials

1 background loading i use techniques such as offscreen
 tags and <script defer=true/> tags to begin loading
your application while the us er is typing in credentials

Most authentication systems feature the ability to protect specific URLs or
URLs matching a pattern or regular expression, such that a browser will
be redirected to a login page or given an access denied error message.
When secuing your SmartClient application:

1 Do protect the URL of your bootstrap HTML file.
Unauthenticated users should be redirected to the login page
when this URL is accessed.

1 Do protect the URLSs that return dynamic data, for example,
sc/IDACall if you are using the SmartClient Server
Framework, or the URL (s) you configure as
DataSource.dataURL if not.

1 Do not protect the static resources that are part of the skin
or the SmartClient runtime underlying SmartClient,
specifically the URL patterns sci/skins/* and sc/ system/*
These are publically available files; protecting them just
causes a performance hit and in some cases can negatively
affect caching

52 Isomorphic Software

SmartClient Quick Start

1 Consider leaving JavaScript application logic files
unprotected. If you are following SmartClient best practices,
actual enforcement of security rules takes place on the
server, so it doesnd6t masideer i f wuser
code. However, if you are concerned that reading clientside
code would help an attacker or competitor understand your
application better, several free JavaScript obfuscators are
available. As with other static resources, not protecting these
files provides a performance boost.

If you are using the SmartClient Server Framework, see theDeclarative
Security section of Chapter 8 for further authentication and authorization
features, including the ability to declare role -based security restrictions in
ds.xml file, create variations on DataSource operations accessible to
different user roles, and create certain operations accessible to
unauthenticated users.

Relogin

When a userod6s session has expired and t1
protected resource, typical authentication systems will redirect the user to

a login page. With Ajax systems such as SrrtClient, this attempted

redirect may happen in response to background data operations, such as a

form trying to save. In this case, the form perceives the login page as a

malformed response and displays a warning, and the login page is never

displayed to the user.

The ideal handling of this scenario i s t
fisuspendedod whautherticated, thenis<anpleted @aormally.

SmartClient makes it easy to implement this ideal handling through the

Relogin subsystem.

To enable SmartClient to detect that session timeout has occurred, a
special marker needs to be added to the HTTP response that is sent when
a user's session has timed out. This is called theoginRequiredMarker

When this marker is detected, SmartClient raises alLoginRequired event,
automatically suspending the current network request so that it can be
later resubmitted after the user logs backin.

e 9 To learn more about the loginRequiredMarker and Relogin,
see:

 SmartClient Reference i Client Reference > RPC > Relogin

53 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..relogin

SmartClient Quick Start

Binding to XML and JSON Services

If you need to integrate with pre -existing XML or JSON web services (you
are unable to install the SmartClient Server Framework and you are

you
XPath-based binding to XML or JSON responses.

unable to use theRestDataSource) ,

can us e

To display XML or JSON data in a visual component such as a ListGrid,
you bind the component to a DataSource which provides the URL of the
service, as well as a declaration of how to form inputs to the service and
how to interpret service responses as DataSource records.

An XPath expression, therecordXPath

S

applied to t

to select the XML elements or JSON objects that should be interpreted as
DataSource records. Then, for each field of the DataSource, an optnal
valuexPath can be declared which selects the value for the field from
within each of the XML elements or JSON objects selected by the

recordXPath . If NO valueXPath

is specified, the field name itself is taken as

an XPath, which will select the same-named subelement or property from

the record element or object.

For example, the following code defines a DataSource that a ListGrid
could bind to in order to display an RSS 2.0 feed.

isc.DataSource.create({

dataURL:feedURL,
recordXPath: "//item"
field s
{name: "title" }
{name: "link" 13
{name: "description"

]
»

A representative slice of an RSS 2.0 feed follows:

<?xml version ="1.0"
<rss version ="2.0" >

<channel>
<title> feed title
<item>
<title> article title

<link> url of article
<description>
article description
</description>
<f/item>
<item>

<[title>

encoding ="iso -8859-1"

?>

54

Isomorphic Software

Smart Cl

he

ent 6s

servi

cebs

r

suppor

SmartClient Quick Start

Here, the recordxPath selects a list ofitem elements. Since the intended
values for eath DataSource field appear as a simple subelements of each
item element (e.g. description), the field name is sufficient to select the
correct values, and no explicit valuexPath needs to be specified.

= I For arunning example of a ListGrid displaying an RSS
feed, seeShowcaseY Data Integration Y XML Y RSS

Feed
= 1 For an example of usingvaluexPath , seeShowcaseY Data
= Integration Y XML Y XPath Binding
_—__J 1 For corresponding JSON examples, seeShowcaseY Data

Integration Y JSONY Simple JSON and JSON XPath
Binding

To retrieve an RSS feed, an empty request is sufficient. For contacting
other kinds of services, thedataProtocol ~ property allows you to customize
how data is sent to the service:

Value Des cription

" getParams " Input data is encoded onto the dataURL , €.g.
http://service.com/search?keyword=foo

" postParams " Input data is sent via HTTP POST, exactly as
an HTML form would submit them

"soap Input data is serialized as a SOAP message

and POST @ahUrRt dused With WSDL
services)

Programmatic control of inputs and outputs is also provided.
DataSource.transformRequest() allows you to modify what data is sent to
the service. DataSource.tra nsformResponse() allows you to modify or
augment the default DSResponse object that SmartClient assembles based
on the recordxPath and valuexPath properties. This allows data
transformations not possible with XPath alone, as well as integration of
DataSource features such as data paging and validation errors with
services that support those features.

e For more information, see SmartClie nt Referencei Client
ReferenceY Data Binding Y Client-side Data Integration

55 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..clientDataIntegration
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..clientDataIntegration

SmartClient Quick Start

WSDL Integration

SmartClient supports automated integration with WSDL -described web
services. This support augments capabilities for integrating with generic
XML services, and consists of:

9 creation of SOAP XML messages from JavaScript
application data, with automatic namespacing, and support
for both "literal” and "encoded" SOAP messaging, and
"document” and "rpc" WSDL -SOAP bindings

i automatic decode of SOAP XML messages to JavaScript
objects, with types (e.g.an XML schema "date" type
becomes a JavaScriptDate object)

1 import of XML Schema (contained in WSDL, or external),
including translating XML Schema "restrictions" to
SmartClient Validators

WSDL services can be contacted by usingXMLTools.loadwsDL() or the
<isc:loadwsDL> JSP tag to load the service definition, then invoking
methods on the resulting webService object.

WebService.callOperation() can be used to manually invoke operations
for custom processing.

= f SeeShowcaseY Data Integration Y XML Y WSDL Web
Servicesfor an example of callOperation()

To bind a component to a web service operation,call

WebService.getFetchDS(operationName,elementName)

to obtain a DataSource which describes the structure of an XML element
or XML Schema type named elementName, which appears in the
response message for the operation namecdperationName . A component
bound to this DataSource will show fields corresponding to the structure
of the chosen XML element or type, that is, one field per subelement or
attribute. fetchData() called on this DataSource (or on a component
bound to it) will invoke the web service operation and load the named
XML elements as data.

Similarly, webService.getinputDS(operationName) returns a DataSource
suitable for binding to a form that a user will fill out to provide inputs to a
web service.

These methods allow very quick development, however, typically you
cannot directly use the XML Schema embedded in a WSDL file to drive
visual component DataBinding in your final application, because XML
Schema lacks key metadata such as useviewable titles.

56 Isomorphic Software

SmartClient Quick Start

You can create a DataSource that has manually declared fieldaind
invokes a web service @eration by setting serviceNamespace to the
targetNamespace Of the <definitions> element from the WSDL file, and
then setting wsOperation to the name of the web service operation to
invoke. In this usage:

9 creation of the operation input SOAP message is sill
handled automatically

9 all of the custom binding facilities described in the preceding
section are available, including XPath-based extraction of
data, and programmatic manipulation of inbound and
outbound data

9 you can still leverage XML Schemassimple Type> definitions
by setting field.type to the name of an XML Schema simple
type embedded in the WSDL file.

| 1 SeeShowcaseY Data Integration Y XML Y Google SOAP
Search for an example of these techniques.

@ 1 The targetNamespace from the WSDL file is also available
aswebSer vice.targetNamespac e 0N aWebService instance.

For full read -write in tegration with a service that supports the basic
DataSource operations on persistent data, OperationBindings can be
declared for each DataSource ogration, and the wsOperat ion property can
be used to bind each DataSource operation (fetch, update, add, remove) to
a corresponding web service operation.

@ 1 To maximize performance, the WSDL tab in the Developer
Console allows you to save ajs file representing a
WebService object, which can then be loaded and cached
like a normal JavaScript file.

57 Isomorphic Software

SmartClient Quick Start

9. SmartClient Ser ver Framework

The SmartClient server framework is a set of Java librariesand servlets
that can be integrated with any pre-existing Java application.

The server framework allows you to rapidly connect SmartClient visual
components to pre-existing Java business logic, or can provide complete,
pre-built persistence functionality based on SQL, Hibernate, JPA or other
Java persistence frameworks.

DataSource Generation

The server framework allows you to generate DataSource descriptors
(.ds.xml files) from Java Beans or SQL tables. This can be done as either a
one-time generation step, or can be donedynamically , creating a direct
connection from the property definitions and annotations on your Java
Beans to your Ul components.

This approach avoids the common problem of Ul component definitions
duplicating information that already exists on the server, while still
enabling every aspect of data bindng to be overridden and specialized for
particular screens.

As an example, if you had the Java Bearcontact , the following is a valid
DataSource whose fields would be derived from a Java Bean:

<DataSource ID="contacts " schemaBean="com.sample.Contact " />

UsingschemaBeand o esndt i mply any parigtuseul ar per si stence
the provided Java class for derivation of DataSource fields only.

The following DataSource would derive its fields from your database
columns (as well as being capable of all CRUD opeations):

<DataSource ID="contacts " serverType ="sql "
tableName ="contacts " autoDeriveSchema ="true " />

58 Isomorphic Software

SmartClient Quick Start

In many scenarios, an auto-derived DataSource is immediately usable for
Ul component databinding. Among other intelligent default behaviors,
field titles appropriate for end users are automatically derived from Java
property names and SQL column names by detecting common naming

patterns.

For example, a Java property accessed by a methodetFirstName()

receives a default title of AFirst Name:«
Acamel Capsd0 naming convent iRRBT,NAME dat aba:
al so receives a default tithelcemmonf AFi r st
database column naming pattern of underscore-separated words.
The default rules for mapping between Java and SQL types and
DataSourceField types are summarized in the following table:
Java Type SQL JDBC Type DataSource
Field type
String, Character CHAR, VARCHAR, text
LONGVARCHAR, CLOB
Integer, Long, INTEGER, BIGINT, SMALLINT, integer
Short, Byte, TINYINT, BIT
Biginteger
Float, Double, FLOAT, DOUBLE, REAL, float
BigDecimall DECIMAL, NUMERIC
Boolean <none> boolean
Date, DATE date
java.sgl.Date
java.sgl.Time TIME time
java.sqgl.Timestam TIMESTAMP datetime
p
any Enum <none> enum
(valueMap also
auto-derived)
Long Varies sequence
In addition to the Java types listed, primitive equivalents are also
supported (Al nt eger 06 i n the tiaehet eandaib pase i mpl i

well as subclasses (for nonfinal

types like Date).

You can customize the automatically generated fields in a manner similar
to customizing the fields of a DataBound component. Fields declared with
the same name as automatically derived fields will override individual
properties from the automatically deriv ed field; fields with new names
will appear as added fields.

59

Isomorphic Software

SmartClient Quick Start

For example, you may have a database columnemployment that stores a
one-character employment status code, andneeds avalueMap to display
appropriate values to end users:

<DataSource ID ="contacts" serverType ="sql"
tableName ="contacts" autoDeriveSchema ="true" >
<fields >
<field name="employment" >
<valueMap >
<value ID="E" >Employed </ value >

<value ID="U" >Unemployed </ value >
</ valueMap >
</ field >
</ fields >
</ DataSource >

Field by field overrides are based on DataSource inheritance, which is a
general purpose feature that allows a DataSource to inherit field
definitions from another DataSource. In effect, schemaBean and
autoDeriveSchema automatically generate an implicit parent DataSource.
Several settingsare available to control field order and field visibility
when using DataSource inheritance, and these settings apply to
automatically generated fields as well.

Finally, note that DataSource definitions are completely dynamic and
actual .ds.xml files on disk are not required: the
DataSource.addDynamicDSGenerator() API can be used to provide XML
DataSource descriptors on the fly.

This API allows you to take advantage of additional sources of metadata
to reduce hand-coding in DataSource descriptors. For example, you may
have partial DataSource descriptors stored on disk, but use a
DynamicDSGenerator to augment them with data derived from custom
Java annotations or organization-specific naming conventions. This
approach is complimentary with the built -in autoDeriveSchema system,
since dynamically produced DataSource descriptors can still use
autoDeriveSchema

For more information on DataSource generation see

e SmartClient Reference i Client Reference > Data Binding :

i DataSource.schemaBean

1 DataSource.inheritsFrom

9 DataSource.autoDeriveSchema

e SmartClient Server JavaDoc:

9 com.isomorphic.datasource.DynamicDSGenerator

60 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1_21
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSource.schemaBean
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSource.inheritsFrom
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSource.autoDeriveSchema
https://www.smartclient.com/smartgwtee-release/server/javadoc/

SmartClient Quick Start

Server Request Flow

When using the SmartClient server framework, DSRequest S go through the
following flow:

1. DSRequestserialization: requests from DataSources are
automatically serialized and delivered to the server.

2. DSRequest parsing: requests are automatically parsed by a
servlet included with the SmartClient server framework, and
become com.isomorphic.datasource.DSReq uest Java Objects.

3. Authentication, validation, and role -based security checks are
performed based on declarations in your DataSource descriptor
(.ds.xml file). For example: requiresRole= " manager "

4. DMI (Direct Method Invocation) and Server Scripts: custom
logic can be run before or after the DataSource operation is
performed, modifying the DSRequest Or DSResponse objects, or
can skip the DataSource operation and directly provide a
DSResponse.

5. Persistence operation: the validated DSRequest is passed to a
DataSource for execution ofthe persistence operation. The
DataSource can be one of several buikin DataSource types
(such as SQL or Hibernate) or a custom type.

6. The DSResponse is automatically serialized and delivered to the
browser.

Most of these steps are entirelyautomatic d when you begin building a
typical application using one of the built -in DataSource types, theonly
server-side source code files you will create are:

T .dsxml files describing your business objects

1 .java files with DMI logic expressing business rules

If you cannot use one of the built-in DataSource types (perhaps you have
a pre-existing, custom ORM solution, or perhaps persistence involves
contacting a remote server), you will also have Java code to implement
persistence operations.

61 Isomorphic Software

SmartClient Quick Start

As your application grows, you can add Java logic or take over processing
at any point in the standard server flow. For example, you can:

1 replace the built-in servlet from step 2 (I DACall) with your
own servlet, or place a servlet filter in front of it

add your own Java validation logic

subclass a builtin DataSource class and add additional logic
before or after the persistence operation, such as logging all
changes

1 provide custom logic for determining whether a user is
authenticated, or has a given role

For a more detailed overview of the server-side processing flow and
documentation of available override points, see:

Q SmartClient Reference i _Concepts > Client-Server
Integration

62 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..clientServerIntegration
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..clientServerIntegration

SmartClient Quick Start

Direct Method Invocation

DMI (Direct Method Invocation) allows you to declare what Java class
and method should be invoked when specific DSRequests arrive at the
server. A DMI is declared by adding a<serverObject> tag to your
DataSource descriptor.

For example, the following declaration indicates that all DSRequest s for
this DataSource should go to the Java classom.sample.DMIHandler

<DataSource D ="contacts" schemaBean ="com.sample.Contact" >
<serverObject className ="com.sample.DMIHandler" />
</ DataSource >

In this example, DMI will invoke a method on com.sample.DMIHandler
named after the type of DataSource operationd fetch() , add() , update()
or remove() .

The attribute lookupStyle controls how the server framework obtains an
instance of DMIHandler . In the sample above, lookupStyle is not specified,
S0 an instance ofDMIHandler is created exactly as though the codenew
DMIHandler() were executed.

Other options for lookupStyle allow you to:

target objects in the current servlet request or servlet session
obtain objects via a factory pattern
obtain objects via the Spring framework, including the
ability to use Springds fAidependency
target object
As an alternative to lookupStyle , you can add small amounts of
business logic directly to your .ds.xml file, avoiding the need for a

separate .java file or formal class declaration. The section Server
Scripting " discusses this approah.

e For more information on using lookupStyle , see:

T SmartClient Reference i Client Reference > Data Binding
> DataSource.serverObject

63 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSource.serverObject
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSource.serverObject

SmartClient Quick Start

DMI Parameters

Methods invoked via DMI can simply declare arguments of certain types,
and they are provided automatically.

For example, a common DMI method signature is:

public DSResponse fetch(DSRequest dsRequest) {

When this method is called via DMI, it will be passed the current
DSRequest . If the method also needs the currentHttpServletRequest it
can simply be declared as an additional parameter:

public DSResponse fetch(DSRequest dsRequest, HttpServletRequest
request) {

This works for all of the common objects available to a servlet (such as
Hitp Session) as well as all SmartClient objects involved in DSRequest
processing (such as DataSource).

Parameter order is not important 8 available objects are matched to your
met hodbés decl ared parameters by type.

For more information on available DMI parameter s, see:

Q 1 SmartClient Reference i Client Reference > RPC > Direct
Method Invocation

Adding DMI Business Logic

A DMI can directly perform the required persistence operation and return
a DSResponse populated with data, and in some use cases, this is the right
approach.

However, if you are using one of the built-in DataSource types in
SmartClient, or you build a similar, re -usable DataSource of your own,
DMI can be used to perform business logic that modifies the default
behavior of DataSources.

Within a DMI, to invoke the default behavior of the DataSource and
obtain the default DSResponse, call dsRequest.execute() . The following
DMI method is equivalent to not declaring a DMI at all:

public DSResponse fetch(DSRequest dsRequest) throws Exception {
return dsRequest. execute ();

}

Given this starting point, we can see that it is possible to:

1. Modify the DSRequest before it is executed by the DataSource.

64 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..dmiOverview
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..dmiOverview

SmartClient Quick Start

For example, you might add criteria to
who are not administrators cannot see records that are marked
deleted.
if (!servletRequest.isUserInRole("admin")){
dsRequest.setFieldValue("deleted" , "false");

}

2. Modify the DSResponse before it is returned to the browser.

For example, adding calculated values derived from DataSource data
or trimming data that the user is not allowed to see. Typically, use
dsResponse.getRecords() and iterate over the returned records,
adding or modifying properties , then pass the modified List of records
10 dsResponse.setData()

3. Substitute a completely different bSResponse, such as returning
an error response if asecurity violation is detected

To return a validation error:

DSResponse dsResponse = new DSResponse();
dsResponse.addError("fieldName" , “errorMessage");
return dsResponse;

For this kind of error, the default client-side behavior will be to show
the error in the Ul component where saving was attempted.

To return an unrecoverable error:

DSResponse dsResponse =
new DSResponse("Failure” , DSResponse.STATUS_FAILURE);
return dsResponse;

For this kind of error, the default client -side behavior is a dialog box
shown to the wuser, with the message fAF
this via the client-side APl RPCManager.setHandleErrorCallback()

65 Isomorphic Software

SmartClient Quick Start

4. Take related actions, such as sending an emainotification.

Arbitrary additional code can be executed before or after
dsRequest.execute() , however, if the related action you need to
perform is a persistence operation (such as adding a row to another
SQL table), a powerful approach is to createadditional, unrelated
DSRequests that affect other DataSources, andexecute() them.

Forexample,you mi ght <create a DataSource
add a record to it every time changes are made to other DataSources:

DSRequest extraRequest = new DSRequest("changelLog" , "add");

extraRequest.setFieldValue("effectedEntity"
dsRequest.getDataSourceName 0);

extraRequest.setFieldValue("modifyingUser"
servletRequest.getRemoteUser());

/I ... capture additional information

extraRequest.execute();

/¥ If you are using the Automatic Transaction management included in

~ Power Edition, and you create a newbDSRequest in @ DMI, you must
call dsRequest.setRPCManager(rpcManager) if you want the DSRequest
to be included in the current transaction.

It often makes sense to create DataSources purely for servesside used a
quick idiom to make a DataSource inaccessible to browser requests is to
add requires="false" to the <DataSource> tagd why this works is
explained in the upcoming Declarative Security section.

Note that many of the DMI use cases described above can alternatively be
achieved by adding simple declarations to your DataSource.ds.xml filed
this is covered in more detail in the upcomi ng Operation Bindings

section.

e For more information on modifying the request and response
objects, or executing additional requests, see:

SmartClient Server JavaDoc:

1 com.isomorphic.datasource.DSRequest

9 com.isomorphic.datasource.DSResponse

e For more information on error handling and display of errors,
see:

SmartClient Reference

i Client Reference > RPC > RPCManager

i Client Reference > Forms > DynamicForm

66 Isomorphic Software

Wi

t h

https://smartclient.com/smartgwtee-release/server/javadoc/com/isomorphic/datasource/DSRequest.html
https://smartclient.com/smartgwtee-release/server/javadoc/com/isomorphic/datasource/DSResponse.html
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..RPCManager
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..DynamicForm

1
-

SmartClient Quick Start

For a sample of DMI used to implement business logic, see:
SmartClient Enterprise Showcase:

http://www.smartclient.com/index.jsp#userSpecific
Data

Returning Data

Whether you return data via DMI, via a custom DataSource, or via writing
your own servlet and directly working with the RPCManager class data that
should be delivered to the browser is passed to thedsResponse.setData()
API.

This API can accept a wide variety of common Java objects and
automatically deliver them to the browser as Record objects, ready for
display by DataBound Components or processing by your code.

For example, if you are responding to a fetch, the following Java objects
will all translate to a List of Records if passed to setData()

Any Collection of Maps

Each mapbecomes arecord and each key/value pair in each Map
becomes aRrecord attribute.

Any Collection of Java Beans that is, Java Objects that use the Java
getPropertyName() / setPropertyName() naming convention

Each Bean becomes aRecord and each property oneach bean
becomes arecord attribute.

Any Collection of DOM Elements (org.w3c.dom.Element)

Each Element becomesa Record , and each attribute or subelement
becomes arecord attribute.

Unlike typical XML, JSON, or RPC serialization systems, it is safe to

dir ectly pass persistent business object20 dsResponse.setData() . Most
serialization systems, when given a persistent object such as a JPA or
Hibernate Bean, will recursively serialize all connected objects. This
frequently causes a multi-megabyte blob of daa to be transmitted unless
extra effort is expended to define a second, almost entirely redundant
bean (called a DTO, or Data Transfer Object) where relevant data is
copied before serialization.

In contrast, with SmartClient, the list of fields in your DataSource is the
full list of fields used by Ul components, so it serves as a natural

67 Isomorphic Software

http://www.smartclient.com/index.jsp#userSpecificData
http://www.smartclient.com/index.jsp#userSpecificData

SmartClient Quick Start

definition of what data to serialize, eliminating the need to define a
redundant ADTO. O

Serializing only data that matches field definitions is enabled by default
for data returned from all DMI and from non -DMI operations on
Hibernate / JPA built -in datasources, but can also be enabled or disabled
automatically by setting DataSource.dropExtraFields

For more information on how Java objects are translated to Records and
how to customize the transformation, see:

Q SmartClient Server JavaDoc:

com.isomorphic.js.JSTransla ter.toJS()

Queuing & Transactions

Queuing is the ability to include more than one DSRequest in a single
HTTP request.

When saving data, queuing allows multiple data update operations in a
single HTTP request so that the operations can be performed as a
transaction. When loading data, queuing allows you to combine multiple
data loading operations into a single HTTP request without writing any
special serverside logic to return a combined result.

Several Ul components automatically use queuing. For examgde, the

ListGrid ~ supports an inline editing capability, including the ability to

delay saving so that changes to multiple records are committed at once

(autoSaveEdits:false). This mode automatically uses queuing,

submitting all changes in a single HTTP request which may contain a

mi xture of Aupdated and fAaddd operations (for exi
respectively).

With respect to the steps described in the preceding section,Server
Request Flow, when a request containing multiple DSRequests is received,
several distinct DSRequests are parsed from the HTTP request received in
step 1, steps 25 are executed foreach DsRequest , and then all

DSResponses are serialized in step 6.

This means thatifanyDat aSource can support the Aupdated opel
the DataSource also supports batch editing of records in aListGrid ~ with

no additional code,si nce this just involves executing the filL
operation multiple times. Likewise, in other instances in which

components automatically use queuing (such asremoveSelectedData()

with multiple records selected, and multi -row drag and drop)

implementing singular DataSource operations means that batch

operations work automatically without additional effort.

68 Isomorphic Software

https://smartclient.com/smartgwtee-release/server/javadoc/com/isomorphic/js/JSTranslater.html#toJS-java.lang.Object-java.io.Writer-

SmartClient Quick Start

If you use the sQLDataSource Or HibernateDataSource ~ With Power Edition
or above, database transactions are used automatically, with a

configurable policy setting (RPCManager.setTransactionPolicy()) as well
as the ability to include or exclude specific requests from the transaction.

To implement transactions with your own persistence logic, make use of
dsRequest.getHttpServletRequest() . Since this API will return the same
servletRequest throughout the processing of a queue of operations, you
can store whatever object represents the transactiond a SQLConnection
HibernateSession , Or similar @ as aservletRequest attribute.

e For more information on transaction support, see:

SmartClient Server JavaDoc:
com.isomorphic.rpc.RPCManager.setTransactionPolicy()

Queuing can be initiated manually by calling the client -side API
RPCManager.startQueue() . Once a queue has been started, any user action
or programmatic call that would normally have caused a DSRequest to be
sent to the server instead places that request in a queue. Calling
RPCManager.sendQueue() then sendsall the queued DSRequests as a single
HTTP request.

When the client receives the response for an entire queue, each response
is processed in order, including any callbacks passed to DataBound
Component methods.

A common pattern for loading all data required in a give n screen is to
start a queue, initiate a combination of manual data fetches (such as
direct calls to DataSource.fetchData()) and automatic data fetches (allow
alistGrid with setAutoFetchData(true) to draw()), then finally call
sendQueue() . Because inorder execution is guaranteed, you can usehe
callback for the final operation in the queue as a means of detecting that
all operations have completed.

e For more information on queuing, see:

SmartClient Reference 1 Client Reference > RPC >
RPCManager.startQueue()

69 Isomorphic Software

http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/rpc/RPCManager.html#setTransactionPolicy%28int%29
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=classMethod..RPCManager.startQueue
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=classMethod..RPCManager.startQueue

SmartClient Quick Start

Queuing, RESTHandler, and SOAs

The existence ofqueuing brings huge architectural benefits. In older web
architectures, it was typical to define a unique object representing all the
data that would need to be loaded for a particular screen or dialog, and a
second object for any data that needed to be saved. Tis resulted in a lot
of redundant code as each new screen introduced slightly different data
requirements.

In contrast, queuing allows you to think of your code as a set of reusable
serviceswhich can be combined arbitrarily to handle specific Ul
scenarios. New Ul functionality no longer implies new server code d you
will only need new server code when you introduce new fundamental
operations, and, when you do introduce such operations, that is the only
new code youol | need to write.

Using the RESTHandler servlet, this architecture can be extended to other,
non-SmartClient Ul technologies that need the same services, as well as to
automated systems. TheRESTHandler servlet provides access tahe same
DataSource operationsyou use with SmartClient Ul components, with the
same security constraints and serverside processing flow, but using

simple XML or JSON over HTTP. The protocol used is the same as that
documented for RestDataSource.

With the combination of queuing and the RESTHandler servlet, as you
build your web application in the most efficient manner, you naturally
create secure, reusable services that fit into the modern enterprise
Service-Oriented Architecture (SOA).

e For more information on the RESTHandler, see:

SmartClient Server JavaDoc:

com.isomorphic.servlet. RESTHandler

Operation Bindings

Operation Bindings allow you to customize how DSRequests are executed
with simple XML declarations.

Each Operation Binding customizes one of the four basic DataSource
operations (fétch O ,add@ ,updafe , O redndve Off) You specify which
operation is customized via the operationType attribute.

Some basic examples:

9 Fixed criteria : declare that a particular operation has certain
criteria hardcoded. For example, in many systems, records
are never actually removed and instead are simply marked
as deleted or inactive. The following declaration would

70 Isomorphic Software

http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/servlet/RESTHandler.html

SmartClient Quick Start

prevent users from seeing records hat have been marked
deleteddany value for the fAdeletedo fiel
client would be overwritten.
<DataSource ... >
<operationBindings>
<operationBinding operationType ="fetch ">
<criteria fieldName ="deleted " value ="false "/>
</ operationBinding>
</operationBindings>
</DataSource>

Because this declaration affects theDSRequest before DMI is
executed, it will work with any persistence approach, including
custom solutions.

1 Per-operation Type DMI : declare separate DMIs for each
operationType.
<operationBinding operationType ="fetch ">
<serverObject className =" com.sample.DMIHandler

methodName=" doFetch " />
</ operationBinding >

This is important when using DMI to add business logic to a

DataSource that already handles basic persistence operations,

since most operations will not need
a DM that handles one operationType only.

You can also use Operabn Bindings to declare multiple variations of a

DataSource operationType. For example, when doing a fetch, in one Ul

component you may want to specify criteria separately for each field, and

in another Ul component you nemrgssalant t o
the fields at once.

These are both operations of type #fAfetctl
they can be distinguished by adding anoperationid to the Operation

Binding. For example, if you had written a DMI method that performs full

textsearchal | ed AdoFull Text Search, 6 you coul
operationBinding like this:

<operationBinding operationType ="fetch "
operationld =" fullTextSearch ">
<serverObject className =" com.sample.DMIHandler
methodName="doFullTextSearc h" />
</ operationBinding >

You could now configure alListGrid to use this Operation Binding via
grid.setFetchOperation("doFullTextSearch").

71 Isomorphic Software

SmartClient Quick Start

Another common use case foroperationid IS output limiting. Some
DataSources have a very large number of fields, only some of which may
be needed for a particular use case, like searching from acomboBox. You
can create a variation of the fetch operation that returns limited fields like
so:

<operationBinding operationT ype ="fetch "
operationld =" comboBoxSearch "
outputs =" nameititle "/>

Then configure a ComboBoxto use this Operation Binding with
comboBox.setOptionOperationld("comboBoxSearch")

Setting outputs always limits the fields that are sent to the browser,
regardless of the type of DataSource used. With the builtin DataSources,
it also limits the fields requested from the underlying data store. Custom
DataSources or DMIs that want to similarly optimize communication with
the datastore can detect the requested outputs via

dsRequest.getOutputs()

For more information on features that can be configured via
Operation Bindings, see:

1 SmartClient Reference i Client Reference >Data Binding
> OperationBinding

Declarative Security

The Declarative Security system allows you to attach rolebased access
control to DataSource operations and DataSource fields,as well as create
a mix of authenticated and non-authenticated operation s for applications
that support limited publicly -accessible functionality.

To attach role requirements to either a DataSource as a whole or to
individual Operation Bindings, add a requiresRole attribute with a
comma-separated list of roles that should haveaccess.

Declarative Security is extremely powerful when combined with the ability

to create variations on core operations via Operation Bindings. For

exampl e, if only users with the role Aadmind shou:
marked as deleted:

<operationB inding operationType ="fetch ">
<criteria fieldname ="deleted " value ="false "/>
</ operationBinding >
<operationBinding operationType ="fetch "
operationld ="adminSearch "
requiresRole ="admin" />

72 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSource.operationBindings
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSource.operationBindings

SmartClient Quick Start

Declarative Security can also be used to control access to individual
DataSourcefields. Setting the editRequiresRole attribute on a
DataSourceField will cause the field to appear as readonly whenever a
user doesnot have any of the listed roles. Anyattempts by such users to
change the field value will be automatically rejected.

Similarly, the viewRequiresRole attribute w ill cause DataBound
Components to avoiding showing the field at all, and values for the field

will be automatically omitted from se rver responses. This behavior is
automatic even if you build a custom DataSource or write DMI logic that
returns data for the field, so it can be used regardless of how persistence is
implemented.

The Declarative Security system can also be used to imgment a mix of
operations, some of which are publicly accessible while others may be
accessed only by logged in users. To declare that a DataSource or
Operation Binding may be accessed only by authenticated users, add
requiresAuthentication= “true ". You can also declare that individual
fields are viewable or editable only by authenticated users, with the
DataSourceField attributes viewRequiresAuthentication and
editRequiresAuthentication

e For more information on Declarative Security, see:

 SmartClient Reference:

Client Reference > Data Binding >
OperationBinding.requiresRole

Client Reference > Data Binding >
DataSource.requiresAuthentication

Client Reference > Data Binding >
DataSourceField.viewRequiresRole

73 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=search%3Doperationbinding.requiresrole
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=search%3Doperationbinding.requiresrole
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSource.requiresAuthentication
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSource.requiresAuthentication
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSourceField.viewRequiresRole
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSourceField.viewRequiresRole

SmartClient Quick Start

Declarative Security Setup

By default, the Declarative Security system uses the standard servlet API
httpServletRequest.getRemoteUser() to determine whether a user is
authenticated, and the API httpServletRequest.isUserlnRole() to
determine whether the user has a given role. In most J2EE security or
JAAS =ecurity frameworks you might use, this API functions properly, and
Declarative Security requires no setup stepsi just start adding
requiresRole attributes.

However, Declarative Security can be used with any security framework
by simply calling RPCManager.setAuthenticated(boolean) to indicate
whether the current request is from an authenticated user, and
RPCManager.setUserRoles () to provide the list of roles. These APIs should
be called before any requests are processed this is typically done as a
simple subclass of the built-in IDACall servlet.

Note further, although the terminology
Security system can also be used as a mucfiner -grained capability
security sy st em. Il nstead of wusing role names

requiresRole attribute, simply use capability names like
ficanEdi t Ac c 0 RACHMasager.saUBeRolesd() S eto provide the
current wuser 6s |tie®eaclaratife Secarppyasystenh. i t i es t o

e For more information on declarative security, see:

1 SmartClient ServerJava Doc
com.isomorphic.rpc.RPCManager.setUserRoles()

com.isomorphic.rpc.RPCManager.setAuthenticated()

com.isomorphic.servlet IDACall

74 Isomorphic Software

used

k e

s fr

i man e

http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/rpc/RPCManager.html#setUserRoles%28java.util.List%29
http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/rpc/RPCManager.html#setAuthenticated%28boolean%29
http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/servlet/IDACall.html

SmartClient Quick Start

Non-Crud Operations

Some operations your application performs will not be "CRUD"
operations - meaning they do not fall into the standard Create,
Retrieve, U pdate, Delete pattern (called "add", "fetch”, "update" and
"remove" in SmartClient). Smart Client provides a few ways to execute
such operations. The most convenient is simplyto take an existing
DataSource and declare a "custom" operation, like

SO:
<operationBinding operationType ="custom"
operation Id ="customOperationld ">
... settings ...

</o perationBinding >

When you declare a custom operation, it means that the input and
outputs of the operation are not constrained - they are not expectedto
conform to the DataSource fields, and will not be subject to basicintegrity
checks such as verifying that an "update" operation containsa value for
the primary key field.

Although the custom operation being declared may not be strictly an
operation on a specific DataSource, there is usually a DataSource thatt is
closely associated with, and declaring the operation in aDataSource file
avoids the need to set up a separate mechanism. lalso means that the
custom operation can participate in queuing and transactions, and that all
of the features of operationBindings can be used exactly as for other
DataSource operations, including DMI and Declarative Security, as well
as SQL Templating and Server Scripting (discussed in upcoming
sections).

However, before declaring a custom operation, be sure you really have
a non-CRUD operation. For example, if your operation returns a list of
objects to be displayed in a grid, it's best represented as dfetch"
operation even if a SQL "SELECT" statementis not involved. Similarly,
an operation that makes changes to DataSource Recordshould usually
be declared with a CRUDoperationType , otherwise, automatic cache
synchronization won't work.

75 Isomorphic Software

SmartClient Quick Start

Specifically, all the following use cases should not usecustom operations:

9 adding logic before or after a CRUD operation - use DMI
instead

9 creating variations on CRUD operations - use
operationBinding.operationid instead

9 doing two or more CRUD operations in a single HTTP
requesti use Queuing instead

To invoke a custom operation, use

DataSource.performCustomOperation(operationld , data). Thedata
parameter can contain any data (including nested structures) and is
accessible server side viathe dsRequest.getValues() API.

e For more information on using Non-CRUD Operations, see:

1 SmartClient Reference > Data Binding >
DataSource.performCustomOperation

76 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=method..DataSource.performCustomOperation
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=method..DataSource.performCustomOperation

SmartClient Quick Start

Dynamic Expressions (Velocity)

In many places within the DataSource .ds.xml file, you can provide a
dynamic expression to be evaluated on the server.

These expressions use the Velocity template languagé a simple, easyto-
learn syntax that is used pervasively in the Java world.

Velocity works in terms of a template contextd a set of objects that are
available for use in expressions. Similar to DMI parameters, all
SmartClient and servlets-related objects are made available in the
template context by default, includin g dsRequest , ServletRequest , session
and so on.

References to objects in theabd,t earpd ad et cC ¢
notation is used to access any property for which a standard Java Bean
figetterdo method exi st sijvauwdlr Mapbyitsccess an)
key. For example, $httpSession.id retrieves the current sessionld via

HttpSession.getld() , and $dsRequest.criteria.myFieldName will retrieve
acriteriavaluef or t he f i el dviabsrygledt.gettritdidy)a me, 0

which returns a Map.
Some mmmon use cases for dynamic expressions:

1 Server Custom Validators

The serverCustom validator type makes many common validation
scenarios into single-line Velocity expressions:

<field name="shipDate " type ="date ">
<validators >
<validator
type ="serverCustom
serverCondition =" $value.time > $ record.orderDate.time ">
</ validators >
</ field >

1 Server-Assigned Criteria/Values

<criteria> and <values> tags allow you to modify the DSRequest

before execution. For example, when implementing something like

a Ashopping cart raiontwbuld fofcodll itemsvi ng dec
added to the cart to be saved with t
sessionld, and only allow the user to see his own items.

<operationBinding operationType ="add">

<values fieldName ="sessionld " value ="$session.id "/>
</ operationBinding>
<operationBinding operationType ="fetch ">

<criteria fieldName ="sessionld " value ="$session.id "/>

</operationBinding>

1 DMI Method Arguments

77 Isomorphic Software

SmartClient Quick Start

The methodArguments attribute can be added to an
<operationBinding> to configure specific arguments that should be
passed to a DMI method. For example, given a Javamethod:

List<Lead> getRelatedLeads(long accountld, boolean
includeDeleted)

You might call this method via a DMI declaration like:

<operationBinding operationType ="fetch ">
<serverObject className =" com.sample.DMIHandler
methodName=" doFullTextSearch
methodArguments =" $criteria.accountld,false ">
</ operationBinding >

Because thegetRelatedLeads =~ method returns a List of Java
Beansd a format compatible with dsResponse.setData() &there is
no need to create or populate aDSResponse. Combining this with
the methodArguments attribute allows you to call pre-existing Java
business logic with no SmartClient -specific server codeat all,
without even the need to import SmartClient libraries code in your
server-side logic.

91 Declarative Security (requires Attribute)

Similar to requiresRole and requiresAuthentication , the
requires attribute allows an arbitrary Velocity expression to
restrict access control.

1 Mail Templates

By adding a<mail> tag to any <operationBinding> , you can cause

an email to be sent if the operation completes successfully A

Velocity expression is allowed for each attribute that configures

the emaild to , from , subject , cc, and so ond as well as the message

template itself. This makes it very easy to send out notifications

when particular records are added or updated,
operation, send emails to a list of recipients retrieved by the fetch.

1 SQL/HQL Templatin g

When using SQLDataSource or HibernateDataSource in Power
Edition and above, Velocity expressions can be used to customize
generated SQL or replace it entirely. This is covered in its own
section, SQL Templating.

If you have additional data or methods you want to make available for
Velocity Expressions, you can add objects as attributes to the
servletRequest - these are accessible via
$servletRequest.getAttribute("attrName") (a shortcut of
requestAttributes.attrNam e also works). You can alternatively add your

own objects directly to the Velocity template context via
dsRequest.addToTemplateContext().

78 Isomorphic Software

SmartClient Quick Start

The Velocity template language can also call Java methods, create new
variables, even execute conditional logic or iterate over collections.
However, for any complex business logic, consider using Server Scripting
instead (described in the next section).

For more information on Velocity -based Dynamic Expressions:

I SmartClient Reference:
Client Reference > Forms > Validator.serverCondition

T SmartClient ServerJava Doc
com.isomorphic.datasource.DSRequest.addToTemplateContext()

1 Velocity User Guide (from the Apache foundation)

velocity.apache.org/user -quide

Server Scripting

SmartClient allows you to embed "scriptlets" directly in your
.ds.xml file to take care of simple business bgic without having to
create a separate file or class to hold the logic.

These scriptlets can be written in any language supported by the
Java" JSR 223" standard, including Java itself, as well as
languages suchas Groovy, JavaScript, Velocity, Python, Ruby,
Scala and Clojure.

The two primary use cases for server scripts are:

1. DMI scriptlets: these scriptlets are declared by adding a

<script> tag to an <operationBinding> or <DataSource> tag. Like
DMI logic declared via<serverObject> , DMI scriptlets can be used
to add business logic by modifying the D SRequest before it is
executed, modifying the default DSResponse, or taking other,
unrelated actions.

2. scriptlet validators: these scriptlets are declared by adding a
<serverCondition> tag to a<validator> definition. Like a
validator declared via <serverObject> , a scriptlet validator defines
whether data is valid by running arbitrary logic, then returning
true or false.

79 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..Validator.serverCondition
http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/datasource/DSRequest.html#addToTemplateContext%28java.lang.String,%20java.lang.Object%29
http://velocity.apache.org/engine/devel/user-guide.html

SmartClient Quick Start

For example, the following scriptlet enforces a security constraint
where all operations on the DataSourcewill involve the sessionid,
so a user can only view and modify their own records.

1 <DataSource..>

)| <script language="java" >

1 String sessionld = session.getld();

1

1 if
(DataSource.isAdd(dsRequest.getOperationType())) {

i dsRequest.setFieldValue("sessionld",
sessionld);

1 } else {

i dsRequest.setCriteriaValue("sessionld",
sessionld);

1 }

1

1 return dsRequest.execute();

1 </ script>

Notice how even though the Java languag is used, there is no
need for a formal class or method definition - the context of a DMI
Script is always the same, and the Server Scipting system avoids
the need to add this "boilerplate code".

Using scriptlets has a couple of major advantages as compared to
using <serverObject>

1. Simplicity & Clarity: scriptlets put business logic right next to
the relevant persistence operation instead of requiring that you
look in a separate .java file

2. Faster Development Cycle: scriptlets are compiled and executed
dynamically, so you do not need to recompile or redeploy your
server code to try out changes to scriptlets. Just edit your
DataSource, andthen either reload the page or retry the

operation. The SmartClient Server framework automatically
notices the changed DataSource and useshe updated scriptlet.

80

Isomorphic Software

SmartClient Quick Start

Note that scriptlets are only recompiled when you change them, so
will only be compiled once everin the final deployment of your
application.

The ability to use Java as a "scripting language" is particularly
powerful:

1. Developers do not have to know more than one language to
work with the code for your application

2. Scriptlets can easily be moved into normal .java files if they are
identified as reusable, become too large to manage in a .ds.xml
file, or if the (small) performance boost of compiling them to .class
files is desired. There is no need totranslate from some other
language into Java

For these reasons we recommend use of Server Scripting with the
Javalanguage even for teamghat would not normally consider
adopting a "scripting language".

= For examples of Server Scripting see:

SmartClient Enterprise Showcase:

http://www.smartclient.com/ __index.jsp# Fe
atured.Samples_Server.Examples Server.Sc

ripting

e For more information on Server Scripting see:

SmartClient Reference:
Concept> Server Script for SmartClient

Including Values from Other DataSources

Frequently, you will need to show a Ul that includes fields from two
related DataSources- something typically accomplished in SQL with a
"join". For simple cases of this, you can

use DataSourceField.includeFrom

For example, a DataSourcestockltem may store information about items
for sale in a store, including "itemName" and "price". A related
DataSourceorderitem may store the "id" and "quantity” of a stockitem

that was ordered. When the user views all theorderitem s in a order, they
want to see the "itemName"s of the related stockitem s, not their "id"s.

81 Isomorphic Software

http://www.smartclient.com/index.jsp#_Featured.Samples_Server.Examples_Server.Scripting
http://www.smartclient.com/index.jsp#_Featured.Samples_Server.Examples_Server.Scripting
http://www.smartclient.com/index.jsp#_Featured.Samples_Server.Examples_Server.Scripting
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..serverScript

SmartClient Quick Start

To accomplish this, you can declare an additional field in the order Item
DataSource like so:

<field includeFrom="stockltem.itemName"/>

Now, when the orderltem DataSource responds to a "fetch” request, it will
include an additional field "itemName" which comes from the related
stocklitem DataSource. Note how the field declared in XML above is not
given a "name" attribute - the name is optional in this case, andwill
default to the name of the included field.

In order for included fields to work, the foreignkey attribute must be used
to declare the relationship between the two DataSources. In this case,
there might be a field orderltem.stockitemlid with

foreignKey="stockltem.id"). Once relationships are declared, multiple
fields may be included from multiple different DataSources by simply
adding more includeFrom declarations.

When includeFrom is used with the built -in SQLDataSource,
HibernateDataSource or JPADataSource (when the provider is
Hibernate), an efficient SQL join is used to include the field from the
related DataSource, and search criteria and sort directions work normally
with included fields.

For other kinds of DataSources,includeFrom operates by first fetching
records from the main DataSource, then fetching related records from the
included DataSource. In this case search criteria and sort directions
specified for included fields only work if data paging is n ot in use.

In the upcoming discussion of SQL Templating we'll see how to do more
advanced joins as well as make use of SQL features such as expressions,
grouping and aggregation.

82 Isomorphic Software

SmartClient Quick Start

SQL Templating

A DataSource declared withs er ver Ty p e uses theSDLDataSource |,
which automatically generates and executes SQL statements against a
database in response toDSRequest S sent by the client.

When using the sQLDataSource with the Power Edition of SmartClient,
SQL Templating enables fine-grained customization of generated SQL.

The SQL generator in Power Edition can take theDSRequest S generated by
DataBound components and automatically handle:

1 Generation of a where clause from complex criteria,
including nested-edprassiondé and fAor o sub

1 Databasespecific SQL forthe most efficient ranged
selections on each platform, for fast data paging

1 Multi -level sorting including support for sorting by
displayed rather than stored values

1 Several different styles of storing basic types like booleans
and dates, for adapting to existing tables

When you inevitably have to customize the generated SQL for a particular
use case, itos critical to preserve as
behavior as possible.

Most systems that allow customization of generated SQL provide only an
all-or-nothing option: if you need to customize, you write the complete
SQL query from scratch, and handle all databasespecific SQL yourself.

In contrast, the SQL Templating system lets you change small parts of the
generated SQL while leaving all the difficult, database-specific SQL up to
SmartClient. SQL Templating also allows you to take advantage of
database specific features where appropriate, without losing autom atic
SQL generation for standard features.

83 Isomorphic Software

SmartClient Quick Start

The following table summarizes the SQL statements that are generated

and

how

the DSReque

st is used (nbte,

additional SQL exists to handle data paging and databasespecific quirks):

Type SQL statement DSRequest usage
fetch SELECT <selectClause> data becomes
FROM <tableClause> <whereClause>
WHERE <whereClause>
GROUP BY <groupClause> ig?fgrdgi%gmes
ORDER BY <orderClause>
outputs becomes
<selectClause>
add INSERT INTO <tableClause> data becomes
<valuesClause> <valuesClause>
update UPDATE <tableClause> data becomes
SET <valuesClause> <valuesClause>
WHERE <whereClause> and <whereClause>
(primary key only)
remove DELETE FROM <tableClause> data becomes
WHERE whereClause> <whereClause> clause
(primary key only)

To customize SQL at a perclause level, you can add tags to your

<operationBinding>

named after SQL clauses. Each clause allows a

Velocity template, and the default SQL that would have been generated is
available to you as a Velocity variable:

XML Tag

Velocity Variable

SQL Meaning

<selectClause>

$defaultSelectClause

List of columns or expressions
appearing after SELECT

<tableClause>

$defaultTableClause

List of tables or table
expressionsappearing after FROM

<whereClause>

$defaultwhereClause

Selection criteria appearing after
WHERE

<valuesClause>

$defaultValuesClause

List of expressions appearing
after seT (for UPDATE or list of
column names and VALUES()
around list of expressions (for
INSERT)

<orderClause>

$defaultOrderClause

List of columns or expressions
appearing after ORDER BY

<groupClause>

<none>

List of columns or expressions
appearing after GROUP BY

As a simple example, in an order management system, you may want to
present a view of all orders for items that are not in stock. Given two

84

Isomorphic Software

t hese

arenot

SmartClient Quick Start

tables, orderitem and stockltem , linked by id, you could add an
<operationBinding> to the DataSource for the orderitem table:

<operationBinding operationType ="fetch "
operationld =" outOfStock ">
<tableClause >orderltem, stockltem </ tableClause >

<whereClause >orderltem.stockltem_id == stockltem.id AND
stocklte m.inStock == 'F' AND
$defaultWhereClause) </ whereClause >
</ operationBinding >

Note the use of$defaultwhereClause 0 this ensuresthat any criteria
submitted to this operation still work. Data paging and sorting likewise
continue to work.

It is also possible to override the entire SQL statement by using the
<customSQL> tag. This makes it very easy to call stored procedures:

< operationBinding operationType ="remove ">
<customSQL> call deleteOrder($criteria.orderNo) </customSQL
</ operationBinding >

When customizing a “fetch" operation, use clause-by-clause overrides
instead where possible. Using the <customsQL> tag for a "fetch" operation
disables the use of efficient data paging approaches that can on} be used
when SmartClient knows the general structure of the SQL

query. However, if you know that your customized SQL is still compatible
with the SQL added for data paging, you can use the
operationBinding.sqlPaging attribute to re -enable it.

Q For more information on SQL Templating, see:

SmartClient Reference i Client Reference >Data Binding >
DataSource > Custom Querying Overview

85 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..customQuerying
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..customQuerying

SmartClient Quick Start

SQL Templatingii Adding Fields

A customized query can return additional

Dat a S o primargtébte, and even allow criteria to be automatically
applied to such fields.

For the common case of incorporating a field from another table, declare

a field as usual with a<field> tag, then add the attribute

tableName="otherTable" . Setting tableNa meenables a field to be fetched

from another table and used in the wWHERElause, but automatically

excludes the field from the SQL for any operationType e x cept Af et ch.

For example, given theorderitem and stockitem tables from the
preceding example, imagne stockitem had a column itemName that you
want to include in results from the orderitem DataSource.

<DataSource ID ="orderltem" serverType ="sql"
tableName ="orderltem"
autoDeriveSchema ="true" >
<fields>
<field name="itemName" type ="text"
tableName ="stockltem" />

<ffields>
<operationBindings>
<operationBinding operationType ="fetch" >
<tableClause >orderltem, stockltem </ tableClause >
<whereClause >orderltem.stockltem_id == stockltem .id AND

($defaultWhereClause) </ whereClause >
</ operationBinding >
</operationBindings>
</DataSource>

This approach can be extended to any number of fields from other tables.

= For an example of SQL Templating being used to add asearchable

= field, see:

1 SmartClient Enterprise Showcase

http://www.smartclient.com/index.jsp#largeValueMapSQL

86 Isomorphic Software

\

(0]

f

el

ds

http://www.smartclient.com/index.jsp#largeValueMapSQL

SmartClient Quick Start

In some cases, you may have several different Operation Bindings th&use
different sets of added fields. In this case, you can setustomSQL="true"

on the <field> element to turn off automatic generation. Then, use the
following <operationBinding> properties to control whether SQL is
generated for the field on a per-<oper ationBinding> basis.

Setting Meaning

customValueFields Comma-separated list of fields to allow in SELECT
clause despite beingcustomSQL="true"

customCriteriaFields Comma-separated list of fields to allow in WHERE
clause despite beingcustomsSQL="true"

excludeCriteriaFields Comma-separated list of fields to exclude from
$defaultWhereClause

You can also define custom SQL on a peffield basis rather than a per-
clause basis using the following properties on a<field>

Setting Meaning

customSelectExpression Expression to use in SELECTand WHERElauses

customUpdateExpression Expression to use in SET clause of UPDATE

custominsertExpression Expression to use in VALUESclause ofINSERT.
Defaults to customUpdateExpression

customSelectExpression alone is enough to create a searchable field that
uses a SQL &pression to derive its value, which can be used for SQL
based formatting, including combining values from multiple database
columns into one logical DataSource field. For example, the following
field definition would combine firstName and lastName columns at the
database:

<field name="fullName"
customSelectExpression ="CONCAT(CONCAT((firstName, ' "),
lastName)" />

Applied in combination, the custom..Expression properties can be used to
create a field that uses SQL expressions to map between a stored SQL
value and the value you want to use inSmartClient Ul components. This

can be used to handle legacy formats for date values, databasspecific
variations of bool ean st orage including Abit
use cases. For example, you might store a price in cents, but want to work
in the Ul in terms of dollars:

<field name="unitPrice" type ="float
customSelectExpression ="unitPrice / 100"
customUpdateExpresion ="$values.unitPrice * 100" />

87 Isomorphic Software

vect

SmartClient Quick Start

Before using these properties, take a look atDataSourceField.
sqlStorageStrategy , Which encapsulates some common scenarios as a
single setting.

Q For more information on SQL Templating, see:

M SmartClient Referencei Client Reference > Binding >
DataSource:

DataSourceField.customSQL

OperationBinding.customCiriteriaFields

DataSourceField.customSelectExpression

DataSourceField.sqglStorageStrategy

For a sample of SQL Templating involving a complex, aggregated
guery that still supports paging and search, see:

-

1 SmartClient Enterprise Showcase

http://www.smartclient.com/index.jsp#dynamicReporting

Why focus on.dsxmi files?

Having read about operation bindings, declarative security, dynamic
expressions and SQL Templating, you probably now realize that 95% of
common web application use cases can be handled with simple settings in
a .ds.xml file. This short section is a reminder of why this brings
tremendous benefits.

9 Declarative

Far more compact than creating a Java class to hold equivalent
logic, and can be read and understood by people who would not be
able to read equivalent Java, such as QA engineers, Ul engineers
or product managers with XML and SQL skills.

91 Centralized

Security rules and other business rules appear right in the
business object definition, where they are more easily found.

88 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..DataSource
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..DataSource
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSourceField.customSQL
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..OperationBinding.customCriteriaFields
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSourceField.customSelectExpression
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSourceField.sqlStorageStrategy
http://www.smartclient.com/index.jsp#dynamicReporting

SmartClient Quick Start

 Secure

ds.xml files are evaluated serverside, so all business rules
declared there are securely enforced. By driving client-side
behavior from secure server declarations, you avoid the common
error of implementing a business rule client -side only, and
forgetting to add server enforcement.

Further, the DataSource definition delivered t o the client
automatically omits all declaration that only drive server -side
behaviors (such as DMI), so there is no information leakage.

Finally, in sensitive contexts like SQL Templating, automatic
quoting is applied, making it far more difficult to acci dentally
create common security flaws like SQL injection attacks.

1 Faster development cycle

To test new functionality in a DataSource .ds.xml file, just reload
the web paged the SmartClient server framework automatically
notices the modified DataSource. No cmpilation and deployment
step required.

Custom DataSources

You can create a DataSource that calls existing business logic by simply
using DMI to declare what Java method to call for each operation. This is
a good approach if you have only a few DataSourcs, or while you are still
learning the basics.

However, SmartClient allows you to create a custom, reusable DataSource
classes in Java, which can then be used with an unlimited number of
ds.xml files. Do this when:

1 you have several DataSources that all ue a similar
persistence approach, and DMI declarations and associated
code would be highly repetitive

9 you are using a built-in DataSource such as SQLDataSource,
but you would like to extend it with additional behaviors

In both cases, you use theserverCons tructor ~ attribute of the
<DataSource> tag to indicate the Java class you would like to use. Your
Java class should extend the DataSource class that you are using for
persistence, or, if writing your own persistence code, extend
com.isomorphic.datasource.Ba sicDataSource

89 Isomorphic Software

SmartClient Quick Start

Providing responses from a custom DataSource works similarly to DMI &
there are 4 methods on a DataSource, one per DataSource operation type,
each of which receives abSRequest and returns a DSResponse. They are
executeFetch , executeUpdate , executeAdd and executeRemove .

If you are extending a built-in DataSource that provides persistence, you
can override one or more of these methods, add your custom logic, and
call the superclass implementation with the Java super keyword.

If you are implementing your own persistence, you need to provide an
implementation for each of the operations you plan to use. Once these
methods are implemented, convenience methods such as
DataSource.fetchByld() become functional automatically. Use
getFieldNames() , getField) and the APIs on the DSField class to
discover the field definitions declared in the .ds.xml file. You can return
data in the DSResponse in exactly the same formats as are allowed for DMI.

A fifth override point, DataSource.execute() , can be used for common
logic that should apply to all four DataSource operations. The execute()
method is called before operation-specific methods such as
executeFetch() and is responsible for invoking these methods. Here
again, usesuper t 0 al |l ow nor mal executi on
wish to centrally customize.

I You can also add custom attributes to your DataSource
ds.xml file. The APIs DataSource.getProperty() and
DSField.getProperty() allow you to detect added attributes
at the DataSource and DataSourceField level respectively.
Use these atributes to configure your persistence behavior
(for example, the URL of a remote service to contact) or use
them to control additional features you add to the built -in
persistent DataSources.

Q For more information on creating custom DataSources, see:

1 SmartClient Reference - Concepts >Persistence
Technologies > Custom Server DataSources

of

90 Isomorphic Software

operation

typ

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..writeCustomDataSource
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..writeCustomDataSource

SmartClient Quick Start

Generic RPC operations (advanced

Generic RPCs allow you to make arbitrary service calls and content
requests against any type of server, but they also require you to
implement your own request/response processing and GUI integration
logic.

SmartClient
server
DSRequest
User action DataSource
(eg ListGrid scrolled) operation
€g
DSRequest Other server
(JSON, XML,
SOAP)
Client Program action ggtr;/tz
GUI (explicit method call) Senvioes
SmartClient
server
RP@Request
Generic RPC
RPCRequest

Other server
(any content)

RPC operations sent to the SmartClient Java Sever can useDMI
declarations to route requests to appropriate server-side code, or a
custom servlet can interact with the server-side RPCManager class to
receive the RPCRequest.

Q 1 For information about implementing RPCs with the
SmartClient server, see theclient and server
documentation for DMI, RPCManager , RPCRequest, and
RPCResponse:

1 SmartClient Reference Y Client ReferenceY RPC

1 JavaDoc for com.isomorphi c.rpc
.::___J I examples/server_integration/custom_operations / shows
how to implement, call, and respond to generic RPCs with

the SmartClient Java Server

91 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1_22

SmartClient Quick Start

RPC operations can also be performed with nonSmartClient servers.

If you are using a WSDL-described web service, the operations of that web
service can be invoked either through DataSource binding (as described
under the heading WSDL Integration in the Data Integration chapter), or
can be invoked directly via webService. callOperation() . Invoking
callOperation() directly is much like an RPC operation, in that it allows
you to bypass the DataSource layer and retrieve data for custom
processing.

If you are not using a WSDL-described web service, you can retrieve the
raw HTTP response from a server (in JavaScript String form) by setting
the property serverOutputAsString on an RPCRequest. For an XML
response, you may then wish to use the facilities of thexmLTools class,
including the parsexML method, to process the response.

Responses that are valid JavaScript may be executed via the native
JavaScript method window.eval() , or can be executed automatically as
part of the RPC operation itself by setting rpcRequest.evalResult

e For information about implementing RPCs with non -
SmartClient servers, see:

T SmartClient Reference - Client Reference> RPC

1 SmartClient Reference - Client Reference> Data
Binding > Web Service (for WSDL-based RPCs)

92 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1_22
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..WebService
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..WebService

SmartClient Quick Start

10. Extending SmartClient

SmartClient provides a rich set of components and services to accelerate
your development, but from time to time, you may want to extend outside
the box of prefabricated features. For example, you might need a new user
interface control, or special styling of an existing control, or a customized
data-flow interaction. With this in mind, we have worked hard to ma ke
SmartClient asopen and extensible as possible.

An earlier chapter (SmartClient Server Framework) outlined the

approaches to extending SmartClient on the server. This chapter outlines
the customizations and extensions that you can make on theclient.

Client-side architecture

The SmartClient client-side system implements multiple layers of services
and components on top of standard web browsers:

Controls Editors Forms
Appllcatlon Grids Visualizatio Container:
Components
Navigatiol Collection: Desigi
. Skinnin Layou Localizatio
Application Y
Services Drag & Drog Data Bindin Context Menu
. Renderiny Event Handlir Browser Utilities
Virtual Browser
Layer Communicatio Timinc Accessibilit
. Class Syste Object Utilities Data Structure
Foundation Y :
Layer Language Extensic Logging & Debuggi

93 Isomorphic Software

SmartClient Quick Start

From the bottom up:

1 The Foundation Layer extends JavaScript to make it a
viable programming language for enterprise applications.
SmartClient adds true class-based inheritance, superclass
calls, complex data structures, logging and debugging
systems, and other extensions that uplift JavaScript from a
lightweight scripting language, to a serious programming
environment.

1 The Virtual Browser Layer handles the most difficult
part of rich web application programming o the vast
collection of workarounds to avoid browser -specific bugs,
and to implement consistent behavior across all supported
browser types, versions, and modes. SmartClient makes web
browsers appear to have standard rendering, event
handling, communication, timing, and other behaviors &
behaviors are not fully specified by web standards, or not
implemented consistently in real web browsers.

1 The Application Services layer provides higher level
services that are shared by all SmartClient components and
applications. This sharing radically reduces the footprint
and complexity of rich web application code.

1 The Application Components layer provides the pre-
fabricated visual componentsd ranging from simple buttons,
to interactive pivot tables 6 that you can assemble and data
bind to create rich web applications.

Earlier chapters of this guide have dealt primarily with the component
layerd because most application development uses prefabricated
components, most of the time. But all of these layers are open to you, and
to third -party developers. If you need a new clientside feature, you can
build or buy components that seamlessly extend SmartClient to your exact
requirements. The following sections detail how.

Customized Themes

The first way to extend a SmartClient application is to change the overall

look-and-feel of theuserinte r f ace. Ysokui ccanamreppl i cation to
match corporate branding, to adhere to usability guidelines, or even to

personalize look & feel to individual user preferences.

The SmartClient SDK includes example themes (ak.a.fis ki ns o) for you to
explore. Usethe Showcaseto browse through each theme.

94 Isomorphic Software

SmartClient Quick Start

You can specify a different user interface theme in the header of your
SmartClient-enabled web pages:

9 In the isomorphic:loadISC tag, set theskin attribute to the
name of an available user interface skin, e.g.
skin="SmartClient"

1 Inaclient-only header, change the path toload_skin.js , €.g.
<SCRIPT SRC=../isomorphic/skins/SmartClient/
load_skin.js>

The files for all available SmartClient user interface themes are located in
the J/isomorphic/skins directory. Each theme provides three collections of
resources to specify look and feel:

Resource Contains

skin_styles.css a collection of CSS styles that are applied to
parts of visual components in various states
(e.g. cellSelectedOver for a selected cell in
a grid with mouse-over highlighting)

images/ a collection of small images that are used as
parts of visual components when CSS
styling is not sufficient (e.g.
TreeGrid/folder_closed.gif)

load_skin.js component property overrides, to change
default interactive behaviors (e.g.
listGrid.canResizeFields) or high-level
programmatic styling (e.g.
listGrid.alternateRecordStyles)

You can customize component appearance in two ways:

1. Create a custom skin : to create a custom skin, copy an
existing skin that most closely matches your intended skin and
modify it. For example , |l et 6s say you wanted
built-i n ASmartCliento skin and call
i Br us h e dMeproaeduse.is as follows:

a. Locate the ASmartCliento skin
and copy the contents of that entire directory into a new
foldercal | ed ABrushedMetal 0.

b. Edit the /isomorphic/skins/BrushedMetal/load_skin.js
file. Find the line near the top of the file that reads:
isc.Page.setSkinDir("[ISOMORPHIC]/skins/SmartClient/")
and change it to:
isc.Page.setSkinDir("[ISOMORPHIC]/skins/BrushedMetal/")

95 Isomorphic Software

C |

to
t he |

under

SmartClient Quick Start

c. Delete the /isomorphic/skins/BrushedMetal/
load_skin.js.gz and /isomorphic/skins/BrushedMetal/
skin_styles.css.gz files.

d Now youbre ready to Yousahdomi ze the new skin.
so by modifying any of the files listed in the table above
inside your new skin directory. When modifying your
custom skin, best practice is to group all changes in
skin_styles.css and load_skin.js near the end of the
file, so that you can easily apply your customizations to
future, improved version s of the original skin.

e. Remember to change the name of the skin to the new
skin name on your page to start using the new skin.

2. Skin individual components : set SmartClient component
properties to use different styles, images, or behaviors. You can
customize these properties on a perclass or perinstance basis.

Q For more information on Customized Themes, see:

SmartClient Reference - Concepts>
Skinning/Theming

SeeShowcaseY Effects Y Look & Feelfor examples of

<
using skinning properties to customize component look &
feel

= The load_skin.js and skin_styles.css files for the

<

SmartClient ~ skin provide a good overview of available
skinning properties. Individual properties can be looked up
in the SmartClient Reference.

Customized Components

The easiest way to extend the SmartClient component set is to subclass
and customize existing components.

The two essential methods for customizing SmartClient component
classes are:

isc.defineClass(newClassName, baseClassName)
isc.newClassName.addProperties(properties)

For exampl e, |l et6s say you want a customized butt
draws bigger, bolder buttons. The standard SmartClient Button

component has a size of 100 by 20 pixels, a noawrapping title, and

styling based on CSS style names that begin wh bufton . 80 this code:

isc.Button.create({title:"standard button title"});

96 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..skinning
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..skinning

SmartClient Quick Start

will create a component that looks like this:
standard button tl

define a BigButton

To create and customize a subclass of the standardutton , you could
class as follows:
isc.defineClass("BigButton" , Button);
and add/override relevant properties on this class as follows:
isc.BigButton.addPro

height:50,

overflow:
baseStyle:

perties({
wrap:true
D

"visible" ,
"bigButton"

Now the following code:
isc.BigButton.create({title:

will create components that look like this:

"big button title
big button

»
title

L

9 examples/ custom_components/BigButton contains the code
for this exampl e
definition).
New Components

(including

t he

=1

If you need to extend beyond the customizable properties of the standard
classes: Canvas, StatefulCanvas

SmartClient component set, you can createentirely new components.
VStack .

New components are usually based on one of the following foundation
Again, you can usedefineClass()

, Layout , HLayout , VLayout , HStack , Or
isc.defineClass(

to define a new class, e.qg.
"myWidg et" , Canvas)

97

Isomorphic Software

SmartClient Quick Start

In addition to instance properties, new components typically add instance
methods, and may also add class (i.e. static) properties and methods. The
core interfaces to flesh out a new component class are:

className.addProperties(properties)

cla ssName.addMethods(methods)
className.addClassProperties(properties)
className.addClassMethods(methods)

e f For more information on these and other class-creation
i nt erfaces,_ see fACI a.ssc‘) and
SmartClient Reference Y Client ReferenceY System.

|II|II
=

examples/custom_components/ contains the source code for
several visual components including SimpleLa bel ,
SimpleSlider , and SimpleHeader 0 that are referenced
below. These examples are your best starting points for
building new SmartClient components.

h
[
-

Q Before you begin development of an entirely new component, try the

= SmartClient Developer Forums at forums.smartclient.com . Other
developers may have created similar components, or Isomorphic
Software may have already scheduled, specifigl, or even
implemented the functionality you need.

The three most common approaches to build a new SmartClient visual
component are:

1. Create aLayout subclass that generates and manages a set of
other components.

This approach is demonstrated in the SimpleHeader example,
which automatically generates member components for the
header image, spacer, and title. This is a fairly trivial example;
Layout subclasses are more often used to build highlevel
compound components and user interface patterns. For
example, you could define a new class that combines a summary
grid, toolbar, and detail area into a single reusable module.

1. Create acanvas subclass that generates and configures a set of
other foundation components.

This approach is demonstrated in the SimpleSlider ~ example, which
builds an interactive slider widget out of a Canvas parent, Stretchimg
track element, and Img thumb element. The SmartClient foundation
components entirely buffer this code from browser -specific
interpretations of HTML, CSS, events, etc.

2. Create acanvas subclass that contains your own HTML and CSS
template code.

98 Isomorphic Software

ACl assFactorybo

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=_1_23
http://forums.smartclient.com/

SmartClient Quick Start

This approach is demonstrated in the SimpleLabel example. It
provides the most flexibility to create components using any feature of
HTML and CSS. However, it also requires that you test, optimize, and
maintain your code on all supported web browsers. Whenever
possible, you should use SmartClient foundation components instead
to buffer your code from browser inconsistencies.

e 9 For more information on creating components from raw
HTML and CSS andintegrating third -party JavaScript
components, see:

T SmartClient Reference - Concepts > DOM Integration &
Third -party Components

@ 1 Whenever you add new properties or methods to a
SmartClient class or subclass, you should name them with
a unique prefix, to avoid future naming conflicts with other
interfaces. If you intend to deploy your extensions in
portals or other environments where interoperability is a
concern, Isomorphic can confirm and reserve a namespace
for your interfaces. Please contact
namespaces@smartclient.comfor assistance.

New Form Controls

New form controls are frequently implemented by taking a built -in form
control and adding an icon that opens a custom value picker.

To create a new form control with this approach:
1. Create a subclass offextitem oOr StaticTextltem

2. Add a picker icon to instances of your control (see
Formltem.icons).

3. Build a custom picker based on any standard or custom
SmartClient components and services (see above).

4. Respond to end-user click events on that icon to show your
picker (see Formitemicon.click) to show your picker.

5. Update the value of the form control based on user interaction
with the picker (see Formitem.setValue()).

6. Hide the picker when appropriate.

Custom pickers are often implemented in SmartClient window oOr Dialog
components.

99 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..domIntegration
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..domIntegration
mailto:namespaces@smartclient.com

SmartClient Quick Start

= 1

examples/custom_components/CustomPicker contains
S example code forYesNoMaybeltem , a form control that
displays a custom picker with Yes, No, and Maybe buttons.
This example also demonstrates the use of static (class)
methods and properties in SmartClient components.

100

Isomorphic Software

SmartClient Quick Start

1 New form controls can alter natively be implemented via
the canvasltem class, which dlows any SmartClient
component to be embedded into aDynamicForm in order to
display and edit a field value. For example, aCanvasitem
can be used to embed a.istGrid , which might be used to
provide an alternative to HTML's multiple select input,
displaying extra styling or additional controls (such as a
"Select All" button). Or, a Canvasitem could contain a
second DynamicForm where multiple Formitems are used to
edit a single field value. A canvasltem could even provide
a complete interface for editing a nested Record.

1 However, when using Canvasltem , remember that you may
also want to support inline editing within a ListGri d. A
custom form control based on a pop-up picker dialog
works well with inline editing because the control remains
the sameheight as most ofthe built -in form controls, so it
does not cause theListGrid row to expand when editors
are shown. While acanvasitem can be usedto embed an
arbitrarily complex interface into a form, the approach of
pop-up picker often makes more sense if the custom form
control will also be used for inline editing in grids.

Q For more information see:

T SmartClient Reference i Client Reference > Forms > Form
I[tems > Canvasl tem

SmartClient Enterprise Showcase:

1 http://www.smartclient.com/index.jsp#nestedEditor

101 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..CanvasItem
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=class..CanvasItem
http://www.smartclient.com/index.jsp#nestedEditor

SmartClient Quick Start

11. Tips

Beginner Tips

1 Pay extra attention to commas in your JavaScript

code.

Specifically in JavaScript Object literals, like the properties passed
to create(). Missing commas between properties, or an extra
comma after the last property, are among the most common
syntax errors.

Use the Developer Console for dynamic testing.

SmartClient eliminates the need to instrument your JS code for
quick tests. Simply open the Developer Console to inspect and
interact with components on -the-fly. The JS evaluator provides a
quick means to make direct method calls while your application is
running.

Use SmartClient logging to debug your applications.

At minimum, use Log.logWwarn() to log debugging messages in the
background, instead of alert() calls that disrupt user experience
and application flow. For even more control, you can take
advantage of log scoping, priorities, and conditionals. See
SmartClient Reference i ConceptsY Debugging

HTML and CSSips

1 Use SmartClient components and layouts instead of

HTML and CSS, whenever possible.

The goal is to avoid browserspecific HTML and CSS code. The
implementations of HTML and CSS vary widely across modern
web browsers, even across different versions of the same browser.
SmartClient components buffer your code from these changes, so
you do not need to test continuously on all supported browsers.

102

Isomorphic Software

SmartClient Quick Start

1 Avoid FRAME and IFRAME elements whenever
possible.

Frames essentially embed another instance of the web browser

inside the current web page. That instance behaves more like an

independent browser window than an integrated page component.
SmartClienté s dynamic components and backg
communication system allow you to perform fully integrated

partial -page updates, eliminating the need for frames in most

cases. If you must use frames, you should explicitly clear them

with frame.document.write("") when the parent page is

unloaded, to avoid memory leaks in Internet Explorer.

1 Manipulate SmartClient components only through
their published APIs.

SmartClient uses HTML and CSS el emen
rendering a complex user interface in the browser. It is technically

possible to access these elements directly from the browser DOM

(Document Object Model). However, these structures vary by

browser type, version, and mode, and they are constantly

improved and optimized in new releases of SmartClient. The only

stable, supported way to manipulate a SmartClient component is

through its published interfaces.

1 Set your browser to HTML5 mode

Internet Explorer 9 and onward are crippled if HTML5 mode is
disabled, therefore, you must use the HTML5 DOCTYPE
<IDOCTYPE html> with these browsers.

Unfortunately, Internet Explorer 8 has poorer performance and
some minor, uncorrectable cosmetic defectswhen used with the
HTML5 DOCTYPE. If possible, use the HTML5 DOCTYPE with
Internet Explorer 9 and above, and omit the DOCTYPE with
Internet Explorer 8 and below.

If this is not possible, just use the HTML5 DOCTYPE for alll
versions of Internet Explorer.

The HTML5 DOCTYPE is also recommended for all other
supported browsers.

Architecture Tips

1 Leverage the SmartClient Ajax architecture for
optimal performance, responsiveness, and
scala bility.

The classic web application model, in which a new pageis
rendered on the server for every client request, is very inefficient.
With SmartClient components and services, your web applications

103 Isomorphic Software

SmartClient Quick Start

can make background data and service requests while uses

continue to interact with the front -end GUI. Thisii Asynchr onous
JavaScript anrdodekaddriradicdllyAmpaoxe)usability

and performance across the board, or specifically in your most

critical workflows.

In brief: Move the presentation workload t o the client. The
SmartClient client -side engine handles:

o complex HTML rendering

o component layout

o view navigation

o read-only operations (filter, sort, find, etc) on cached data

Souser interruptions can be virtually eliminated, and server
round -trips minimized to those required for data/service calls and
secure business logic.

9 Structure your code for optimal client caching.

Since SmartClient provides client-side component rendering and
page layout, it is possible to cache most of the structure and logic
of your presentation on the client, for even better performance.
Specifically: Avoid server -side templating of SmartClient JS or
SmartClient XML code files. Your goal should be a bootstrap page
with a block of templated JS variables, followed by a set of static,
cacheable JS or XML includes. Those included fileswill contain
either:

o declarative SmartClient Ul and DataSource descriptors, or

o client-side logic that referencesthe initial
dynamic/templated variables from the bootstrap page, as
well as dynamic properties and data fetched viaRPGCs after
the page has loaded

For web applications that are deployed over slow WAN, dialup, or
cellular links, you may want to integrate the optional Network
Performance module. This SmartClient module provides explicit
caching control, as well asserver-side file packaging and
compression services for optimal perform ance on slow networks.

1 Load many components at once, and defer
creating/draw ing each component until it must be
shown to the end user.

The average SmartClient component definition is 10 to 50 times
smaller than the corresponding static HTML. You can therefore
load hundreds of visual components, representing dozens of

104 Isomorphic Software

SmartClient Quick Start

unique application views, in the time and memory that are
normally used for a single HTML page.

However, it does take time and memory to create and draw all of
those components on the client. For immediate responsiveness,
you will want to create and draw only the components required for
the initial view. Other pre -loaded components may be created and
drawn on-the-fly.

o To defer creating a component, wrap thecreate() call in a
JS function that you can call on demand. If you take this
approach, you can alsodestroy() components to free up
client resources, and later re-create them from your
constructor function.

o To defer drawing a component, set itsautoDraw property
to false . Or call the global isc.setAutoDraw(false) to
disable automatic drawing for all subsequently created
components. To explicitly draw a component, call draw() .
You can alsoclear() components to free up client
resources, and calldraw() again later.

1 Multiple Primary Keys

DataSources with multiple primary keys are supported by most
components and interactions that involve primary keys, including
ListGrid editing as well as the server-side SQL, Hibernate and JPA
connectors. Multiple primary key are not supported for definin g
tree structures, or for certain convenience features like
dataSourceField.includeFrom.

However, if you have a choice, it's preferred to use a singular
primary key of type "sequence”. Validation logic and/or a unique
constraint in the data store can be used to ensure the uniqueness
of values across multiple fields.

If you are stuck with a data model involving multiple primary keys
and you need to use a feature that doesn't support multiple
primary keys, you can use a "synthetic" primary key: declare a
single primary key in your DataSource, then generate values for
this field by combining the values of the primary key fields in the
underlying data store.

Q For more information on architecting your
applications for high -performance, client-side view
navigation, seeSmartClient Reference Y Concepts
Y SmartClient Architecture .

105 Isomorphic Software

https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..smartArchitecture
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..smartArchitecture
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=group..smartArchitecture

SmartClient Quick Start

12.

106 Isomorphic Software

SmartClient Quick Start

12. Evaluating SmartClient

This chapter offers advice for the most effective approaches to use when
evaluating Smart Client for use in your project or product.

Which Edition to Evaluate

SmartClient comes in several editions, including a free edition under the
Lesser GNU PublicLicense (LGPL).

We alwaysrecommend using the commercial edition for evaluation. The
reason is simply that applications built on the commercial edition can be
easily convertedto the LGPL version without wasted effort, but the
reverseis not true.

For example, the commercial edition of SmartClient includes a sample
project with a pre-configured Hypersonic SQL Database, which you can
use to evaluate all of the capabilities ofSmartClient's Ul components
without ever writing a line of ser ver code, using simple visualtools to
create and modify SQL tables as needed.

If you ultimately decide not to purchase acommercial license,
SmartClient's DataSource architecture allows for plug-replacement of
DataSourceswithout affecting any Ul code or client-side business logic.
So, you cansimply replace the SQL DataSources you used during
evaluation with an alternative implementation, and there is no wasted
work.

Similarly, if part of your evaluation involves connecting to pre -existing
Java business logic,SmartClient Direct Method Invocation (DMI) allows
you to route DataSource requests to Javamethods by simply declaring the
target Java class and method in an XML file. To later migrate to
SmartClient LGPL, just replace your DMI declarations with your own
system for serializing and de-serializing requests and routing them to
Java methods.

107 Isomorphic Software

SmartClient Quick Start

If you wrote any server-side pre- or post-processing logic to adapt
Smar t Clregueststaddgesponses to yourbusiness logic methods, this
will continue to be usable if you decide to write and maintain a
replacement for SmartClient DMI. No code is thrown away and none of
your Ul code needs to change.

In contrast, if you were to evaluate using the LGPL edition and implement
REST-based integration, upon purchasing a license you will immediately
want to switch to the more powerful, pre -built server integration instead,
which also provides access to all serverbased features.In this scenario
you will have wasted time building a REST connector during evaluation
and given yourself afalse perception of the learning curve and effort
involved in using SmartClient.

Evaluating the commercial edition gives you a more effective, more
accurate evaluation processand avoids wasted effort.

Evaluating Performance

SmartClient is the highest performance platform available for web
applications, and you can easily confirm this during your evaluation.

However, be careful to measure correctly : much of the performance
advice you may encounter applies to websites, is focused on reducing
initial load time, and can actually drastically reduce responsiveness and
scalability if applied to a web application .

Unlike many web sites, web applications are visited repeatedly by the
same users on arequent basis, and users will spend significant time
actually using the application.

To correctly assess the performance of a welapplication , what should be
measured is performance when completing a typical series of tasks.

For example, in many different types of applications a user will search for
a specific record, view the details of that record, modify that record or
related data, and repeat this pattern many times within a given session.

To assess performance in this scenarig what should be measuredare
requests for dynamically generated responses - for example, results from
a database query.Requests for static files, such as images and CSS style
sheets, can be ignored since these resources are cachealdlehese requests
will not recur as the user runs through the task multiple times, and will
not recur the next time the user visits the application.

108 Isomorphic Software

SmartClient Quick Start

Focusing on dynamic responses allows you to measure:

9 responsiveness typically a dynamic response means the
user is blocked, waiting for the application to load data. It 6s
key to measure and minimize these responses because these
are the responses users are actually waiting for in real usage.

9 scalability: dynamic responses representtrips to a data
store and processing by the application serve® unlike
requests for cacheable resources, which occur only once ever
per user, dynamically generated responsesdictate how many
concurrent users the application can support.

Using network monit oring tools such as Firebug (getfirebug.com) or
Fiddler (fiddlertool.com), you can monitor the number of requests for
dynamic data involved in completing this task multipl e times.

Dondt use the Areloado button during
Instead, launch the application from a bookmark . This simulates a

user visiting the page from an external link or bookmark . In

contrast, reloading the pageforces the browser to send extra

requestsfor cacheable resourceswhich would not occur for a

normal user.

With the correct performance testing approach in hand, you are ready to
correctly assessthe performance of SmartClient. If you have followed
SmartClient best practices, you application will show a drastic reduction
in dynamic requests due to features like:

1 Adaptive Filtering and Sort: eliminates the most expensive
category of search and sort operations by adaptively
performing search and sort operations in-browser whenever
possible.

Adaptive Filter Example

Adaptive Sort Example

1 Central Write -Through Caching: smaller datasets can be
centrally cached in-browser, even if they are modifiable

DataSource.cacheAllData documentation

9 Least Recently Used(LRU) Caching: automatic re-use of
recently fetched results in picklists and other contexts.

109 Isomorphic Software

http://www.getfirebug.com/
http://www.fiddlertool.com/
http://www.smartclient.com/index.jsp#adaptiveFilter
http://www.smartclient.com/index.jsp#adaptiveSort
https://www.smartclient.com/smartclient-release/isomorphic/system/reference/?id=attr..DataSource.cacheAllData

SmartClient Quick Start

Evaluating Interactive Performance

When evaluating interactive performance:

9 Disable Firebug or any similar third -party debugger or

profiler

These tools are great for debugging, but do degrade

performance and can cause false memory leaksend users
won't have these tools enabled whe they visit your
application or site, so to assess realworld performance, turn
these tools off.

Close the Developer Console, revert log settings, and ensure
Track RPCs is off

Both refreshing the live Developer Console and storing large
amounts of diagnostic output have a performance impact.

To see the application as a normal end user, revert log
settings to the default (only warnings are shown), disable
ATrack RPCs0 in the RPC Tab,
Console.

Use normal browser cache settings

Developers often set browsers to non-default cache settings,
causing repeated requests that can degrade interactivity.

End users won't have these special settings, so to assess real
world performance, revert to browser defaults.

and

110

Isomorphic Software

c

0s e

t

he

Dev

SmartClient Quick Start

Evaluating Editions and Prcing

If you are a professionally employed developer, the cost of entry level
commercial licenses isrecouped if your team is able to leverage just one
feature.

Consider, for example, the long term cost of recreating any single feature
from the Pro product:

1 time spent designing & developing your own version of the
feature

9 time spent testing & debugging your own version of the
feature

time spent addressing bugs in the feature after deployment

time spent maintaining the code over time - supporting new
browsers, or adding additional, related features that appear
in the Pro product, that would have been effortless upgrades

If you work on a team, these costs may be multiplied many times as
different developers repeatedly encounter situations where a feature from
Pro would have saved effort.

Furtherm ore, looked at comprehensively, the cost of building and
delivering an application includes time spent defining and designing the
application, time spent developin g, debugging anddeploying the
application, cost of the hardware the application runs on, licenses to other
software, end user training, and many other costs.

The price of the most advanced SmartClient technology is a tiny part of

the overall cost of developing an application, and can deliver huge savings
in all of these areas. For this reason it makes senseto work with the most
advanced SmartClient technology available.

If you are adeveloper and you recognize that the features in Pro could
save you time, you may find that an argument firmly based on cost
savings and ROI(Return On Investment) will enable you to work with
cutting edge technology and save you from wasting time fre-inventing the
wheel. 0

111 Isomorphic Software

SmartClient Quick Start

A note on supporting Open Source

The free, open source (LGPL) version ofSmartClient exists because of the
commercial version of the product. The free and commercial parts of the
product are split in such a way that further development of the

commercial version necessarily involves substantial upgrades to theopen
source version, and historically, new releases have contained as least as
many new features in the free product as in the commercial version.

Further development of the commercial version also allows commercial
features to migrate to the free, open source version over ime.

As with any open source project, patches and contributions are always
welcome. However, as aprofessionally employed developer, the best way
to support the free product is to fuel further innovation by purchasing
licenses, support, and other services.

112 Isomorphic Software

SmartClient Quick Start

Contacts

Isomorphic is deeply committed to the success of our customers.If you
have any questions, comments, or requestspleasefeel free to contact the

SmartClient product team:

Web

General

Evaluation S upport

Licensing

smartclient.com

info@smartclient.com

feedback@smartclient.com

forums.smartclient.com

sales@smartclient.com

We welcome your feedback, and hank you for choosing SmartClient.

End of Guide

113

Isomorphic Software

http://www.smartclient.com/
mailto:info@smartclient.com
mailto:feedback@smartclient.com
http://forums.smartclient.com/
mailto:sales@smartclient.com

	Contents
	How to use this guide
	More than Just Widgets —A Complete Architecture
	Eliminates Cross-Browser Testing and Debugging
	Complete Solution
	Open, Flexible Architecture

	1. Overview
	Architecture
	Capabilities and Editions of SmartClient
	Standard Capabilities
	Optional Modules
	SDK Components

	2. Installation
	Requirements
	Steps
	Server Configuration (optional)

	3. Resources
	Showcase
	Demo Application
	Developer Console
	Reference
	Community Wiki

	4. Coding
	Languages
	Headers
	Components
	Hello World
	Deploying

	5. Visual Components
	Component Documentation & Examples
	Identifying Components
	Manual Layout
	Drawing, Hiding, and Showing Components
	Handling Events

	6. Data Binding
	Databound Components
	Fields
	Form Controls
	DataSources
	DataSource Operations
	DataBound Component Operations
	Data Binding Summary

	7. Layout
	Component Layout
	Container Components
	Form Layout

	8. Data Integration
	DataSource Requests
	SmartClient Server Framework
	DSRequests and DSResponses
	Request and Response Transformation
	Criteria, Paging, Sorting and Caching
	Authentication and Authorization
	Relogin
	Binding to XML and JSON Services
	WSDL Integration

	9. SmartClient Server Framework
	DataSource Generation
	Server Request Flow
	Direct Method Invocation
	DMI Parameters
	Adding DMI Business Logic
	Returning Data
	Queuing & Transactions
	Queuing, RESTHandler, and SOAs
	Operation Bindings
	Declarative Security
	Declarative Security Setup
	Non-Crud Operations
	Dynamic Expressions (Velocity)
	Server Scripting
	Including Values from Other DataSources
	SQL Templating
	SQL Templating — Adding Fields
	Why focus on .ds.xml files?
	Custom DataSources
	Generic RPC operations (advanced)

	10. Extending SmartClient
	Client-side architecture
	Customized Themes
	Customized Components
	New Components
	New Form Controls

	11. Tips
	Beginner Tips
	HTML and CSS Tips
	Architecture Tips

	12. Evaluating SmartClient
	Which Edition to Evaluate
	Evaluating Performance
	Evaluating Interactive Performance
	Evaluating Editions and Pricing
	A note on supporting Open Source

	Contacts

